Spaces:
Sleeping
Sleeping
File size: 3,015 Bytes
b1b57bb 9a3240f b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 b1b57bb 119d2a6 4e69452 b1b57bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
title: Textilindo AI Assistant
emoji: π€
colorFrom: blue
colorTo: green
sdk: docker
sdk_version: "4.0.0"
app_file: app.py
pinned: false
license: mit
short_description: AI Assistant for Textilindo textile company
---
# π€ Textilindo AI Assistant
An intelligent AI assistant for Textilindo textile company with advanced training capabilities, built with FastAPI and Hugging Face Transformers.
## β¨ Features
- **Intelligent Chat Interface**: Natural language conversations in Indonesian
- **Company Knowledge**: Trained on Textilindo's specific information
- **Model Training**: Train custom models with your data
- **Fast Response**: Optimized for quick customer service
- **Mobile Friendly**: Responsive web interface
- **API Ready**: RESTful API for integration
## π Quick Start
### Chat Interface
Visit the main page to start chatting with the AI assistant. Ask questions about:
- Company location and hours
- Product information
- Ordering and shipping
- Sample requests
- Pricing and terms
### Training API
#### Start Training
```bash
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/start" \
-H "Content-Type: application/json" \
-d '{
"model_name": "distilgpt2",
"dataset_path": "data/lora_dataset_20250910_145055.jsonl",
"config_path": "configs/training_config.yaml",
"max_samples": 10,
"epochs": 1,
"batch_size": 1,
"learning_rate": 5e-5
}'
```
#### Check Training Status
```bash
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/status"
```
#### Test Trained Model
```bash
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/test"
```
#### Get Training Data Info
```bash
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/data"
```
#### Check GPU Availability
```bash
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/gpu"
```
## π οΈ Technical Details
### Architecture
- **Framework**: FastAPI with Uvicorn
- **AI Model**: Llama 3.1 8B Instruct (via Hugging Face)
- **Training**: PyTorch with Transformers
- **Language**: Indonesian (Bahasa Indonesia)
- **Deployment**: Docker on Hugging Face Spaces
### API Endpoints
#### Chat Endpoints
- `GET /` - Main chat interface
- `POST /chat` - Chat API endpoint
- `GET /health` - Health check
- `GET /info` - Application information
#### Training Endpoints
- `POST /api/train/start` - Start model training
- `GET /api/train/status` - Check training progress
- `GET /api/train/data` - Get training data information
- `GET /api/train/gpu` - Check GPU availability
- `POST /api/train/test` - Test trained model
### Environment Variables
Set these in your space settings:
```bash
# Required: Hugging Face API Key
HUGGINGFACE_API_KEY=your_api_key_here
# Optional: Model selection
DEFAULT_MODEL=meta-llama/Llama-3.1-8B-Instruct
```
## π Support
For technical issues:
1. Check the `/health` endpoint
2. Review space logs
3. Verify environment variables
4. Test with mock responses
---
*Built with β€οΈ for Textilindo customers* |