Textilindo-AI / app_api_only.py
harismlnaslm's picture
Replace app.py with pure API version - no HTML interfaces
e513905
#!/usr/bin/env python3
"""
Textilindo AI Training API - Pure API Version
No HTML interfaces, only API endpoints for training and chat
"""
import os
import json
import logging
import torch
from pathlib import Path
from datetime import datetime
from typing import Dict, Any, Optional
from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel
import uvicorn
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Textilindo AI Training API",
description="Pure API-based training system for Textilindo AI Assistant",
version="1.0.0"
)
# Training status storage
training_status = {
"is_training": False,
"progress": 0,
"status": "idle",
"current_step": 0,
"total_steps": 0,
"loss": 0.0,
"start_time": None,
"end_time": None,
"error": None
}
# Request/Response models
class TrainingRequest(BaseModel):
model_name: str = "distilgpt2"
dataset_path: str = "data/lora_dataset_20250910_145055.jsonl"
config_path: str = "configs/training_config.yaml"
max_samples: int = 20
epochs: int = 1
batch_size: int = 1
learning_rate: float = 5e-5
class TrainingResponse(BaseModel):
success: bool
message: str
training_id: str
status: str
class ChatRequest(BaseModel):
message: str
conversation_id: Optional[str] = None
class ChatResponse(BaseModel):
response: str
conversation_id: str
status: str = "success"
# API Information
@app.get("/")
async def api_info():
"""API information endpoint"""
return {
"name": "Textilindo AI Training API",
"version": "1.0.0",
"description": "Pure API-based training system for Textilindo AI Assistant",
"hardware": "2 vCPU, 16 GB RAM (CPU basic)",
"status": "ready",
"endpoints": {
"training": {
"start": "POST /api/train/start",
"status": "GET /api/train/status",
"data": "GET /api/train/data",
"gpu": "GET /api/train/gpu",
"test": "POST /api/train/test"
},
"chat": {
"chat": "POST /chat",
"health": "GET /health"
}
}
}
# Health check
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"hardware": "2 vCPU, 16 GB RAM"
}
# Training API endpoints
@app.post("/api/train/start", response_model=TrainingResponse)
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
"""Start training process"""
global training_status
if training_status["is_training"]:
raise HTTPException(status_code=400, detail="Training already in progress")
# Validate inputs
if not Path(request.dataset_path).exists():
raise HTTPException(status_code=404, detail=f"Dataset not found: {request.dataset_path}")
if not Path(request.config_path).exists():
raise HTTPException(status_code=404, detail=f"Config not found: {request.config_path}")
# Start training in background
training_id = f"train_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
background_tasks.add_task(
train_model_async,
request.model_name,
request.dataset_path,
request.config_path,
request.max_samples,
request.epochs,
request.batch_size,
request.learning_rate
)
return TrainingResponse(
success=True,
message="Training started successfully",
training_id=training_id,
status="started"
)
@app.get("/api/train/status")
async def get_training_status():
"""Get current training status"""
return training_status
@app.get("/api/train/data")
async def get_training_data_info():
"""Get information about available training data"""
data_dir = Path("data")
if not data_dir.exists():
return {"files": [], "count": 0}
jsonl_files = list(data_dir.glob("*.jsonl"))
files_info = []
for file in jsonl_files:
try:
with open(file, 'r', encoding='utf-8') as f:
lines = f.readlines()
files_info.append({
"name": file.name,
"size": file.stat().st_size,
"lines": len(lines)
})
except Exception as e:
files_info.append({
"name": file.name,
"error": str(e)
})
return {
"files": files_info,
"count": len(jsonl_files)
}
@app.get("/api/train/gpu")
async def get_gpu_info():
"""Get GPU information"""
try:
gpu_available = torch.cuda.is_available()
if gpu_available:
gpu_count = torch.cuda.device_count()
gpu_name = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return {
"available": True,
"count": gpu_count,
"name": gpu_name,
"memory_gb": round(gpu_memory, 2)
}
else:
return {"available": False}
except Exception as e:
return {"error": str(e)}
@app.post("/api/train/test")
async def test_trained_model():
"""Test the trained model"""
model_path = "./models/textilindo-trained"
if not Path(model_path).exists():
return {"error": "No trained model found"}
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# Test prompt
test_prompt = "Question: dimana lokasi textilindo? Answer:"
inputs = tokenizer(test_prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=inputs.input_ids.shape[1] + 30,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {
"success": True,
"test_prompt": test_prompt,
"response": response,
"model_path": model_path
}
except Exception as e:
return {"error": str(e)}
# Chat API endpoint
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""Chat with the AI assistant"""
try:
# Simple mock response for now
mock_responses = {
"dimana lokasi textilindo": "Textilindo berkantor pusat di Jl. Raya Prancis No.39, Kosambi Tim., Kec. Kosambi, Kabupaten Tangerang, Banten 15213",
"jam berapa textilindo beroperasional": "Jam operasional Senin-Jumat 08:00-17:00, Sabtu 08:00-12:00.",
"berapa ketentuan pembelian": "Minimal order 1 roll per jenis kain",
"apa ada gratis ongkir": "Gratis ongkir untuk order minimal 5 roll.",
"apa bisa dikirimkan sample": "Hallo kak untuk sampel kita bisa kirimkan gratis ya kak 😊"
}
# Simple keyword matching
user_lower = request.message.lower()
response = "Halo! Saya adalah asisten AI Textilindo. Bagaimana saya bisa membantu Anda hari ini? 😊"
for key, mock_response in mock_responses.items():
if any(word in user_lower for word in key.split()):
response = mock_response
break
return ChatResponse(
response=response,
conversation_id=request.conversation_id or "default",
status="success"
)
except Exception as e:
logger.error(f"Chat error: {e}")
return ChatResponse(
response="Maaf, terjadi kesalahan. Silakan coba lagi.",
conversation_id=request.conversation_id or "default",
status="error"
)
# Training function
async def train_model_async(
model_name: str,
dataset_path: str,
config_path: str,
max_samples: int,
epochs: int,
batch_size: int,
learning_rate: float
):
"""Async training function"""
global training_status
try:
training_status.update({
"is_training": True,
"status": "starting",
"progress": 0,
"start_time": datetime.now().isoformat(),
"error": None
})
logger.info("🚀 Starting training...")
# Import training libraries
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import Dataset
# Check GPU
gpu_available = torch.cuda.is_available()
logger.info(f"GPU available: {gpu_available}")
# Load model and tokenizer
logger.info(f"📥 Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
if gpu_available:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
else:
model = AutoModelForCausalLM.from_pretrained(model_name)
logger.info("✅ Model loaded successfully")
# Load training data
training_data = load_training_data(dataset_path, max_samples)
if not training_data:
raise Exception("No training data loaded")
# Convert to dataset
dataset = Dataset.from_list(training_data)
def tokenize_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding=True,
max_length=256,
return_tensors="pt"
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir="./models/textilindo-trained",
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=2,
learning_rate=learning_rate,
warmup_steps=5,
save_steps=10,
logging_steps=1,
save_total_limit=1,
prediction_loss_only=True,
remove_unused_columns=False,
fp16=gpu_available,
dataloader_pin_memory=gpu_available,
report_to=None,
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
)
# Start training
training_status["status"] = "training"
trainer.train()
# Save model
model.save_pretrained("./models/textilindo-trained")
tokenizer.save_pretrained("./models/textilindo-trained")
# Update status
training_status.update({
"is_training": False,
"status": "completed",
"progress": 100,
"end_time": datetime.now().isoformat()
})
logger.info("✅ Training completed successfully!")
except Exception as e:
logger.error(f"Training failed: {e}")
training_status.update({
"is_training": False,
"status": "failed",
"error": str(e),
"end_time": datetime.now().isoformat()
})
def load_training_data(dataset_path: str, max_samples: int = 20) -> list:
"""Load training data from JSONL file"""
data = []
try:
with open(dataset_path, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
if i >= max_samples:
break
if line.strip():
item = json.loads(line)
# Create training text
instruction = item.get('instruction', '')
output = item.get('output', '')
text = f"Question: {instruction} Answer: {output}"
data.append({"text": text})
logger.info(f"Loaded {len(data)} training samples")
return data
except Exception as e:
logger.error(f"Error loading data: {e}")
return []
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)