Spaces:
Sleeping
Sleeping
| # You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
| # OpenAI Chat completion | |
| import os | |
| from openai import AsyncOpenAI # importing openai for API usage | |
| import chainlit as cl # importing chainlit for our app | |
| from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
| from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
| from dotenv import load_dotenv | |
| import asyncio | |
| from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter | |
| from aimakerspace.vectordatabase import VectorDatabase | |
| from aimakerspace.openai_utils.prompts import ( | |
| UserRolePrompt, | |
| SystemRolePrompt, | |
| AssistantRolePrompt, | |
| ) | |
| load_dotenv() | |
| RAQA_PROMPT_TEMPLATE = """ | |
| Use the provided context to answer the user's query. | |
| You may not answer the user's query unless there is specific context in the following text. | |
| If you do not know the answer, or cannot answer, please respond with "I don't know". | |
| Context: | |
| {context} | |
| """ | |
| USER_PROMPT_TEMPLATE = """ | |
| User Query: | |
| {user_query} | |
| """ | |
| def load_vector_db_from_local_file(file_path="data/KingLear.txt"): | |
| """generates the vector database object base on a local file""" | |
| # load text file and split into chunk of documents | |
| text_loader = TextFileLoader(file_path) | |
| documents = text_loader.load_documents() | |
| text_splitter = CharacterTextSplitter() | |
| split_documents = text_splitter.split_texts(documents) | |
| # initialize vector db and build from list of documents | |
| vector_db = VectorDatabase() | |
| vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) | |
| return vector_db | |
| def get_formatted_prompts(vector_db_retriever: VectorDatabase, user_query: str): | |
| raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) | |
| user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) | |
| context_list = vector_db_retriever.search_by_text(user_query, k=4) | |
| context_prompt = "" | |
| for context in context_list: | |
| context_prompt += context[0] + "\n" | |
| formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) | |
| formatted_user_prompt = user_prompt.create_message(user_query=user_query) | |
| return formatted_system_prompt, formatted_user_prompt | |
| # marks a function that will be executed at the start of a user session | |
| async def start_chat(): | |
| settings = { | |
| "model": "gpt-3.5-turbo", | |
| "temperature": 0, | |
| "max_tokens": 500, | |
| "top_p": 1, | |
| "frequency_penalty": 0, | |
| "presence_penalty": 0, | |
| } | |
| cl.user_session.set("settings", settings) | |
| # marks a function that should be run each time the chatbot receives a message from a user | |
| async def main(message: cl.Message): | |
| settings = cl.user_session.get("settings") | |
| client = AsyncOpenAI() | |
| # print(f"This is the message received by the user : {message.content}") | |
| # this the loading of the vector database | |
| vector_db = load_vector_db_from_local_file() | |
| formatted_system_prompt, formatted_user_prompt = list( | |
| get_formatted_prompts( | |
| vector_db_retriever=vector_db, | |
| user_query=message.content | |
| ) | |
| ) | |
| # print(f"formatted_system_prompt : {formatted_system_prompt}") | |
| # print(f"formatted_user_prompt : {formatted_user_prompt}") | |
| formatted_messages =[formatted_system_prompt, formatted_user_prompt] | |
| msg = cl.Message(content="") | |
| # Call OpenAI | |
| async for stream_resp in await client.chat.completions.create( | |
| messages=formatted_messages, stream=True, **settings | |
| ): | |
| token = stream_resp.choices[0].delta.content | |
| if not token: | |
| token = "" | |
| await msg.stream_token(token) | |
| # print(f"This is the message sent by the model : {msg.content}") | |
| # Send and close the message stream | |
| await msg.send() | |