Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,7 +18,7 @@ from facebox import FaceBox
|
|
| 18 |
|
| 19 |
verifyThreshold = 0.67
|
| 20 |
|
| 21 |
-
maxFaceCount =
|
| 22 |
|
| 23 |
licensePath = "license.txt"
|
| 24 |
license = ""
|
|
@@ -90,49 +90,67 @@ def compare_face():
|
|
| 90 |
faceBoxes2 = (FaceBox * maxFaceCount)()
|
| 91 |
faceCount2 = faceDetection(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2, maxFaceCount)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
templateExtraction(
|
| 96 |
-
|
| 97 |
-
if similarity > verifyThreshold:
|
| 98 |
-
result = "Same person"
|
| 99 |
-
else:
|
| 100 |
-
result = "Different person"
|
| 101 |
-
elif faceCount1 == 0:
|
| 102 |
-
result = "No face1"
|
| 103 |
-
elif faceCount2 == 0:
|
| 104 |
-
result = "No face2"
|
| 105 |
-
|
| 106 |
-
if faceCount1 == 1:
|
| 107 |
landmark_68 = []
|
| 108 |
for j in range(68):
|
| 109 |
-
landmark_68.append({"x": faceBoxes1[
|
| 110 |
|
| 111 |
-
|
| 112 |
-
"yaw": faceBoxes1[
|
| 113 |
-
"face_quality": faceBoxes1[
|
| 114 |
-
"left_eye_closed": faceBoxes1[
|
| 115 |
-
"face_occlusion": faceBoxes1[
|
| 116 |
"landmark_68": landmark_68}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
if faceCount2 == 1:
|
| 119 |
landmark_68 = []
|
| 120 |
for j in range(68):
|
| 121 |
-
landmark_68.append({"x": faceBoxes2[
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
"
|
| 126 |
-
"
|
| 127 |
-
"
|
|
|
|
| 128 |
"landmark_68": landmark_68}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
@app.route('/compare_face_base64', methods=['POST'])
|
| 137 |
def compare_face_base64():
|
| 138 |
result = "None"
|
|
@@ -175,48 +193,66 @@ def compare_face_base64():
|
|
| 175 |
faceBoxes2 = (FaceBox * maxFaceCount)()
|
| 176 |
faceCount2 = faceDetection(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2, maxFaceCount)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
templateExtraction(
|
| 181 |
-
|
| 182 |
-
if similarity > verifyThreshold:
|
| 183 |
-
result = "Same person"
|
| 184 |
-
else:
|
| 185 |
-
result = "Different person"
|
| 186 |
-
elif faceCount1 == 0:
|
| 187 |
-
result = "No face1"
|
| 188 |
-
elif faceCount2 == 0:
|
| 189 |
-
result = "No face2"
|
| 190 |
-
|
| 191 |
-
if faceCount1 == 1:
|
| 192 |
landmark_68 = []
|
| 193 |
for j in range(68):
|
| 194 |
-
landmark_68.append({"x": faceBoxes1[
|
| 195 |
|
| 196 |
-
|
| 197 |
-
"yaw": faceBoxes1[
|
| 198 |
-
"face_quality": faceBoxes1[
|
| 199 |
-
"left_eye_closed": faceBoxes1[
|
| 200 |
-
"face_occlusion": faceBoxes1[
|
| 201 |
"landmark_68": landmark_68}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
if faceCount2 == 1:
|
| 204 |
landmark_68 = []
|
| 205 |
for j in range(68):
|
| 206 |
-
landmark_68.append({"x": faceBoxes2[
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
"yaw": faceBoxes2[
|
| 210 |
-
"face_quality": faceBoxes2[
|
| 211 |
-
"left_eye_closed": faceBoxes2[
|
| 212 |
-
"face_occlusion": faceBoxes2[
|
| 213 |
"landmark_68": landmark_68}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
if __name__ == '__main__':
|
| 222 |
port = int(os.environ.get("PORT", 8080))
|
|
|
|
| 18 |
|
| 19 |
verifyThreshold = 0.67
|
| 20 |
|
| 21 |
+
maxFaceCount = 8
|
| 22 |
|
| 23 |
licensePath = "license.txt"
|
| 24 |
license = ""
|
|
|
|
| 90 |
faceBoxes2 = (FaceBox * maxFaceCount)()
|
| 91 |
faceCount2 = faceDetection(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2, maxFaceCount)
|
| 92 |
|
| 93 |
+
faces1_result = []
|
| 94 |
+
for i in range(faceCount1):
|
| 95 |
+
templateExtraction(image_np1, image_np1.shape[1], image_np1.shape[0], faceBoxes1[i])
|
| 96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
landmark_68 = []
|
| 98 |
for j in range(68):
|
| 99 |
+
landmark_68.append({"x": faceBoxes1[i].landmark_68[j * 2], "y": faceBoxes1[i].landmark_68[j * 2 + 1]})
|
| 100 |
|
| 101 |
+
face = {"x1": faceBoxes1[i].x1, "y1": faceBoxes1[i].y1, "x2": faceBoxes1[i].x2, "y2": faceBoxes1[i].y2,
|
| 102 |
+
"yaw": faceBoxes1[i].yaw, "roll": faceBoxes1[i].roll, "pitch": faceBoxes1[i].pitch,
|
| 103 |
+
"face_quality": faceBoxes1[i].face_quality, "face_luminance": faceBoxes1[i].face_luminance, "eye_dist": faceBoxes1[i].eye_dist,
|
| 104 |
+
"left_eye_closed": faceBoxes1[i].left_eye_closed, "right_eye_closed": faceBoxes1[i].right_eye_closed,
|
| 105 |
+
"face_occlusion": faceBoxes1[i].face_occlusion, "mouth_opened": faceBoxes1[i].mouth_opened,
|
| 106 |
"landmark_68": landmark_68}
|
| 107 |
+
|
| 108 |
+
faces1_result.append(face)
|
| 109 |
+
|
| 110 |
+
for i in range(faceCount2):
|
| 111 |
+
templateExtraction(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2[i])
|
| 112 |
|
|
|
|
| 113 |
landmark_68 = []
|
| 114 |
for j in range(68):
|
| 115 |
+
landmark_68.append({"x": faceBoxes2[i].landmark_68[j * 2], "y": faceBoxes2[i].landmark_68[j * 2 + 1]})
|
| 116 |
|
| 117 |
+
|
| 118 |
+
face = {"x1": faceBoxes2[i].x1, "y1": faceBoxes2[i].y1, "x2": faceBoxes2[i].x2, "y2": faceBoxes2[i].y2,
|
| 119 |
+
"yaw": faceBoxes2[i].yaw, "roll": faceBoxes2[i].roll, "pitch": faceBoxes2[i].pitch,
|
| 120 |
+
"face_quality": faceBoxes2[i].face_quality, "face_luminance": faceBoxes2[i].face_luminance, "eye_dist": faceBoxes2[i].eye_dist,
|
| 121 |
+
"left_eye_closed": faceBoxes2[i].left_eye_closed, "right_eye_closed": faceBoxes2[i].right_eye_closed,
|
| 122 |
+
"face_occlusion": faceBoxes2[i].face_occlusion, "mouth_opened": faceBoxes2[i].mouth_opened,
|
| 123 |
"landmark_68": landmark_68}
|
| 124 |
+
|
| 125 |
+
faces2_result.append(face)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
if faceCount1 > 0 and faceCount2 > 0:
|
| 129 |
+
results = []
|
| 130 |
+
for i in range(faceCount1):
|
| 131 |
+
for j in range(faceCount2):
|
| 132 |
+
similarity = similarityCalculation(faceBoxes1[i].templates, faceBoxes2[j].templates)
|
| 133 |
+
match_result = {"face1": i, "face2": j, "similarity": similarity}
|
| 134 |
+
results.append(match_result)
|
| 135 |
+
|
| 136 |
+
response = jsonify({"resultCode": "Ok", "faces1": faces1_result, "faces2": faces2_result, "results": results})
|
| 137 |
|
| 138 |
+
response.status_code = 200
|
| 139 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 140 |
+
return response
|
| 141 |
+
elif faceNum1 == 0:
|
| 142 |
+
response = jsonify({"resultCode": "No face1", "faces1": faces1, "faces2": faces2})
|
| 143 |
|
| 144 |
+
response.status_code = 200
|
| 145 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 146 |
+
return response
|
| 147 |
+
elif faceNum2 == 0:
|
| 148 |
+
response = jsonify({"resultCode": "No face2", "faces1": faces1, "faces2": faces2})
|
| 149 |
|
| 150 |
+
response.status_code = 200
|
| 151 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 152 |
+
return response
|
| 153 |
+
|
| 154 |
@app.route('/compare_face_base64', methods=['POST'])
|
| 155 |
def compare_face_base64():
|
| 156 |
result = "None"
|
|
|
|
| 193 |
faceBoxes2 = (FaceBox * maxFaceCount)()
|
| 194 |
faceCount2 = faceDetection(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2, maxFaceCount)
|
| 195 |
|
| 196 |
+
faces1_result = []
|
| 197 |
+
for i in range(faceCount1):
|
| 198 |
+
templateExtraction(image_np1, image_np1.shape[1], image_np1.shape[0], faceBoxes1[i])
|
| 199 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
landmark_68 = []
|
| 201 |
for j in range(68):
|
| 202 |
+
landmark_68.append({"x": faceBoxes1[i].landmark_68[j * 2], "y": faceBoxes1[i].landmark_68[j * 2 + 1]})
|
| 203 |
|
| 204 |
+
face = {"x1": faceBoxes1[i].x1, "y1": faceBoxes1[i].y1, "x2": faceBoxes1[i].x2, "y2": faceBoxes1[i].y2,
|
| 205 |
+
"yaw": faceBoxes1[i].yaw, "roll": faceBoxes1[i].roll, "pitch": faceBoxes1[i].pitch,
|
| 206 |
+
"face_quality": faceBoxes1[i].face_quality, "face_luminance": faceBoxes1[i].face_luminance, "eye_dist": faceBoxes1[i].eye_dist,
|
| 207 |
+
"left_eye_closed": faceBoxes1[i].left_eye_closed, "right_eye_closed": faceBoxes1[i].right_eye_closed,
|
| 208 |
+
"face_occlusion": faceBoxes1[i].face_occlusion, "mouth_opened": faceBoxes1[i].mouth_opened,
|
| 209 |
"landmark_68": landmark_68}
|
| 210 |
+
|
| 211 |
+
faces1_result.append(face)
|
| 212 |
+
|
| 213 |
+
for i in range(faceCount2):
|
| 214 |
+
templateExtraction(image_np2, image_np2.shape[1], image_np2.shape[0], faceBoxes2[i])
|
| 215 |
|
|
|
|
| 216 |
landmark_68 = []
|
| 217 |
for j in range(68):
|
| 218 |
+
landmark_68.append({"x": faceBoxes2[i].landmark_68[j * 2], "y": faceBoxes2[i].landmark_68[j * 2 + 1]})
|
| 219 |
+
|
| 220 |
|
| 221 |
+
face = {"x1": faceBoxes2[i].x1, "y1": faceBoxes2[i].y1, "x2": faceBoxes2[i].x2, "y2": faceBoxes2[i].y2,
|
| 222 |
+
"yaw": faceBoxes2[i].yaw, "roll": faceBoxes2[i].roll, "pitch": faceBoxes2[i].pitch,
|
| 223 |
+
"face_quality": faceBoxes2[i].face_quality, "face_luminance": faceBoxes2[i].face_luminance, "eye_dist": faceBoxes2[i].eye_dist,
|
| 224 |
+
"left_eye_closed": faceBoxes2[i].left_eye_closed, "right_eye_closed": faceBoxes2[i].right_eye_closed,
|
| 225 |
+
"face_occlusion": faceBoxes2[i].face_occlusion, "mouth_opened": faceBoxes2[i].mouth_opened,
|
| 226 |
"landmark_68": landmark_68}
|
| 227 |
+
|
| 228 |
+
faces2_result.append(face)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
if faceCount1 > 0 and faceCount2 > 0:
|
| 232 |
+
results = []
|
| 233 |
+
for i in range(faceCount1):
|
| 234 |
+
for j in range(faceCount2):
|
| 235 |
+
similarity = similarityCalculation(faceBoxes1[i].templates, faceBoxes2[j].templates)
|
| 236 |
+
match_result = {"face1": i, "face2": j, "similarity": similarity}
|
| 237 |
+
results.append(match_result)
|
| 238 |
|
| 239 |
+
response = jsonify({"resultCode": "Ok", "faces1": faces1_result, "faces2": faces2_result, "results": results})
|
| 240 |
+
|
| 241 |
+
response.status_code = 200
|
| 242 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 243 |
+
return response
|
| 244 |
+
elif faceNum1 == 0:
|
| 245 |
+
response = jsonify({"resultCode": "No face1", "faces1": faces1, "faces2": faces2})
|
| 246 |
|
| 247 |
+
response.status_code = 200
|
| 248 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 249 |
+
return response
|
| 250 |
+
elif faceNum2 == 0:
|
| 251 |
+
response = jsonify({"resultCode": "No face2", "faces1": faces1, "faces2": faces2})
|
| 252 |
+
|
| 253 |
+
response.status_code = 200
|
| 254 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
| 255 |
+
return response
|
| 256 |
|
| 257 |
if __name__ == '__main__':
|
| 258 |
port = int(os.environ.get("PORT", 8080))
|