j-tobias
commited on
Commit
·
f3d14a8
1
Parent(s):
ecc69a8
cleaned
Browse files- README.md +1 -1
- createevalset.py +0 -0
- eval.py +0 -22
- model.py +16 -6
- test.v01.py +0 -25
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 💬
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
|
|
|
| 1 |
---
|
| 2 |
+
title: ASR Model Comparison
|
| 3 |
emoji: 💬
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
createevalset.py
DELETED
|
File without changes
|
eval.py
DELETED
|
@@ -1,22 +0,0 @@
|
|
| 1 |
-
from dataset import Dataset
|
| 2 |
-
from model import Models
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def data(dataset):
|
| 6 |
-
for i, item in enumerate(dataset):
|
| 7 |
-
yield {**item["audio"], "reference": item["norm_text"]}
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def streamed_infernce(dataset, pipeline):
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# placeholders for predictions and references
|
| 14 |
-
predictions = []
|
| 15 |
-
references = []
|
| 16 |
-
|
| 17 |
-
# run streamed inference
|
| 18 |
-
for out in pipeline(data(dataset), batch_size=16):
|
| 19 |
-
predictions.append(pipeline(out["text"]))
|
| 20 |
-
references.append(out["reference"][0])
|
| 21 |
-
|
| 22 |
-
return predictions, references
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
-
import nemo.collections.asr as nemo_asr
|
| 6 |
|
| 7 |
from dataset import Dataset
|
| 8 |
from utils import data
|
|
@@ -44,8 +44,8 @@ class Model:
|
|
| 44 |
self.model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr")
|
| 45 |
self.processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr", do_upper_case=True)
|
| 46 |
|
| 47 |
-
elif option == "nvidia/stt_en_fastconformer_ctc_large":
|
| 48 |
-
|
| 49 |
|
| 50 |
def select(self, option:str=None):
|
| 51 |
if option not in self.options:
|
|
@@ -61,6 +61,8 @@ class Model:
|
|
| 61 |
references, predictions = self._process_openai_whisper_tiny_en(dataset)
|
| 62 |
elif self.selected == "facebook/s2t-medium-librispeech-asr":
|
| 63 |
references, predictions = self._process_facebook_s2t_medium(dataset)
|
|
|
|
|
|
|
| 64 |
|
| 65 |
return references, predictions
|
| 66 |
|
|
@@ -85,8 +87,6 @@ class Model:
|
|
| 85 |
|
| 86 |
def _process_facebook_s2t_medium(self, DaTaSeT:Dataset):
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
def map_to_pred(batch):
|
| 91 |
features = self.processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
|
| 92 |
input_features = features.input_features
|
|
@@ -109,4 +109,14 @@ class Model:
|
|
| 109 |
predictions.append(sample['transcription'])
|
| 110 |
references.append(sample[text_column])
|
| 111 |
|
| 112 |
-
return references, predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
+
# import nemo.collections.asr as nemo_asr
|
| 6 |
|
| 7 |
from dataset import Dataset
|
| 8 |
from utils import data
|
|
|
|
| 44 |
self.model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr")
|
| 45 |
self.processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr", do_upper_case=True)
|
| 46 |
|
| 47 |
+
# elif option == "nvidia/stt_en_fastconformer_ctc_large":
|
| 48 |
+
# self.model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="nvidia/stt_en_fastconformer_ctc_large")
|
| 49 |
|
| 50 |
def select(self, option:str=None):
|
| 51 |
if option not in self.options:
|
|
|
|
| 61 |
references, predictions = self._process_openai_whisper_tiny_en(dataset)
|
| 62 |
elif self.selected == "facebook/s2t-medium-librispeech-asr":
|
| 63 |
references, predictions = self._process_facebook_s2t_medium(dataset)
|
| 64 |
+
# elif self.selected == "nvidia/stt_en_fastconformer_ctc_large":
|
| 65 |
+
# references, predictions = self._process_facebook_s2t_medium(dataset)
|
| 66 |
|
| 67 |
return references, predictions
|
| 68 |
|
|
|
|
| 87 |
|
| 88 |
def _process_facebook_s2t_medium(self, DaTaSeT:Dataset):
|
| 89 |
|
|
|
|
|
|
|
| 90 |
def map_to_pred(batch):
|
| 91 |
features = self.processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
|
| 92 |
input_features = features.input_features
|
|
|
|
| 109 |
predictions.append(sample['transcription'])
|
| 110 |
references.append(sample[text_column])
|
| 111 |
|
| 112 |
+
return references, predictions
|
| 113 |
+
|
| 114 |
+
def _process_stt_en_fastconformer_ctc_large(self, DaTaSeT:Dataset):
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
self.model.transcribe(['2086-149220-0033.wav'])
|
| 118 |
+
|
| 119 |
+
predictions = []
|
| 120 |
+
references = []
|
| 121 |
+
|
| 122 |
+
return references, predictions
|
test.v01.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
from utils import hf_login, data, compute_wer
|
| 2 |
-
from dataset import Dataset
|
| 3 |
-
from model import Model
|
| 4 |
-
|
| 5 |
-
hf_login()
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def run_tests (dataset_choice:str, model:str):
|
| 13 |
-
|
| 14 |
-
MoDeL = Model()
|
| 15 |
-
MoDeL.select(model)
|
| 16 |
-
MoDeL.load()
|
| 17 |
-
DaTaSeT = Dataset(100)
|
| 18 |
-
DaTaSeT.load(dataset_choice)
|
| 19 |
-
references, predictions = MoDeL.process(DaTaSeT)
|
| 20 |
-
wer = compute_wer(references=references, predictions=predictions)
|
| 21 |
-
return wer
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
print("WER:", run_tests(dataset_choice="GigaSpeech", model="facebook/s2t-medium-librispeech-asr"))
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|