Spaces:
Sleeping
Sleeping
zalupa3
Browse files- README.md +133 -2
- app.py +43 -43
- example_submission.jsonl +4 -0
- requirements.txt +0 -1
- src/about.py +25 -19
- src/display/css_html_js.py +1 -1
- src/display/utils.py +184 -207
- src/envs.py +3 -3
- src/leaderboard/processor.py +143 -218
- src/populate.py +21 -96
- src/submission/submit.py +42 -112
README.md
CHANGED
|
@@ -29,6 +29,137 @@ models:
|
|
| 29 |
|
| 30 |
---
|
| 31 |
|
| 32 |
-
#
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
---
|
| 31 |
|
| 32 |
+
# CodeReview Bench Leaderboard
|
| 33 |
|
| 34 |
+
A comprehensive leaderboard for evaluating automated code review systems across programming languages and review quality dimensions.
|
| 35 |
+
|
| 36 |
+
## Features
|
| 37 |
+
|
| 38 |
+
- **Multi-Language Support**: Evaluates models across 17+ programming languages including Python, JavaScript, Java, C++, TypeScript, Go, Rust, and more
|
| 39 |
+
- **Dual Language Comments**: Supports both Russian and English comment languages
|
| 40 |
+
- **Comprehensive Metrics**:
|
| 41 |
+
- LLM-based multimetric evaluation (readability, relevance, explanation clarity, problem identification, actionability, completeness, specificity, contextual adequacy, consistency, brevity)
|
| 42 |
+
- Exact-match metrics (pass@1, pass@5, pass@10, BLEU@10)
|
| 43 |
+
- **Interactive Visualization**: Compare model performance across categories with radar plots
|
| 44 |
+
- **Easy Submission**: Submit your model results via web interface
|
| 45 |
+
|
| 46 |
+
## Metrics
|
| 47 |
+
|
| 48 |
+
### LLM-based Multimetric
|
| 49 |
+
|
| 50 |
+
- **Readability**: How easy the review is to understand
|
| 51 |
+
- **Relevance**: How relevant the review is to the code
|
| 52 |
+
- **Explanation Clarity**: How clear the explanations are
|
| 53 |
+
- **Problem Identification**: How well problems are identified
|
| 54 |
+
- **Actionability**: How actionable the suggestions are
|
| 55 |
+
- **Completeness**: How complete the review is
|
| 56 |
+
- **Specificity**: How specific the feedback is
|
| 57 |
+
- **Contextual Adequacy**: How well the review fits the context
|
| 58 |
+
- **Consistency**: How consistent the review style is
|
| 59 |
+
- **Brevity**: How concise the review is
|
| 60 |
+
|
| 61 |
+
### Exact-Match Metrics
|
| 62 |
+
|
| 63 |
+
- **Pass@1**: Percentage of correct reviews on first attempt
|
| 64 |
+
- **Pass@5**: Percentage of correct reviews in top 5 attempts
|
| 65 |
+
- **Pass@10**: Percentage of correct reviews in top 10 attempts
|
| 66 |
+
- **BLEU@10**: BLEU score for top 10 review candidates
|
| 67 |
+
|
| 68 |
+
## Programming Languages Supported
|
| 69 |
+
|
| 70 |
+
- Python
|
| 71 |
+
- JavaScript
|
| 72 |
+
- Java
|
| 73 |
+
- C++
|
| 74 |
+
- C#
|
| 75 |
+
- TypeScript
|
| 76 |
+
- Go
|
| 77 |
+
- Rust
|
| 78 |
+
- Swift
|
| 79 |
+
- Kotlin
|
| 80 |
+
- Ruby
|
| 81 |
+
- PHP
|
| 82 |
+
- C
|
| 83 |
+
- Scala
|
| 84 |
+
- R
|
| 85 |
+
- Dart
|
| 86 |
+
- Other
|
| 87 |
+
|
| 88 |
+
## Comment Languages
|
| 89 |
+
|
| 90 |
+
- Russian (ru)
|
| 91 |
+
- English (en)
|
| 92 |
+
|
| 93 |
+
## Example Categories
|
| 94 |
+
|
| 95 |
+
- Bug Fix
|
| 96 |
+
- Code Style
|
| 97 |
+
- Performance
|
| 98 |
+
- Security
|
| 99 |
+
- Refactoring
|
| 100 |
+
- Documentation
|
| 101 |
+
- Testing
|
| 102 |
+
- Architecture
|
| 103 |
+
- Other
|
| 104 |
+
|
| 105 |
+
## Installation
|
| 106 |
+
|
| 107 |
+
```bash
|
| 108 |
+
pip install -r requirements.txt
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
## Usage
|
| 112 |
+
|
| 113 |
+
```bash
|
| 114 |
+
python app.py
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
## Submission Format
|
| 118 |
+
|
| 119 |
+
Submit your results as a JSONL file where each line contains:
|
| 120 |
+
|
| 121 |
+
```json
|
| 122 |
+
{
|
| 123 |
+
"model_name": "your-model-name",
|
| 124 |
+
"programming_language": "python",
|
| 125 |
+
"comment_language": "en",
|
| 126 |
+
"readability": 8.5,
|
| 127 |
+
"relevance": 9.0,
|
| 128 |
+
"explanation_clarity": 7.8,
|
| 129 |
+
"problem_identification": 8.2,
|
| 130 |
+
"actionability": 8.7,
|
| 131 |
+
"completeness": 8.0,
|
| 132 |
+
"specificity": 7.5,
|
| 133 |
+
"contextual_adequacy": 8.3,
|
| 134 |
+
"consistency": 8.8,
|
| 135 |
+
"brevity": 7.2,
|
| 136 |
+
"pass_at_1": 0.75,
|
| 137 |
+
"pass_at_5": 0.88,
|
| 138 |
+
"pass_at_10": 0.92,
|
| 139 |
+
"bleu_at_10": 0.65,
|
| 140 |
+
"total_evaluations": 100
|
| 141 |
+
}
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
## Environment Variables
|
| 145 |
+
|
| 146 |
+
Set the following environment variables:
|
| 147 |
+
|
| 148 |
+
```bash
|
| 149 |
+
HF_TOKEN=your_huggingface_token
|
| 150 |
+
OWNER=your-organization
|
| 151 |
+
RESULTS_DATASET_ID=your-org/codereview-bench-results
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Citation
|
| 155 |
+
|
| 156 |
+
```bibtex
|
| 157 |
+
@misc{codereviewbench2025,
|
| 158 |
+
author = {CodeReview Bench Team},
|
| 159 |
+
title = {CodeReview Bench: Comprehensive Benchmark for Automated Code Review Systems},
|
| 160 |
+
year = {2025},
|
| 161 |
+
publisher = {GitHub},
|
| 162 |
+
journal = {GitHub repository},
|
| 163 |
+
howpublished = {\url{https://github.com/your-org/codereview-bench}}
|
| 164 |
+
}
|
| 165 |
+
```
|
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
|
@@ -25,18 +25,19 @@ from src.about import (
|
|
| 25 |
)
|
| 26 |
from src.display.css_html_js import custom_css
|
| 27 |
from src.display.utils import (
|
| 28 |
-
|
| 29 |
DISPLAY_COLS,
|
| 30 |
METRIC_COLS,
|
| 31 |
HIDDEN_COLS,
|
| 32 |
NEVER_HIDDEN_COLS,
|
| 33 |
CATEGORIES,
|
| 34 |
-
|
|
|
|
| 35 |
ModelType,
|
| 36 |
Mode,
|
| 37 |
Precision,
|
| 38 |
WeightType,
|
| 39 |
-
|
| 40 |
get_all_column_choices,
|
| 41 |
get_default_visible_columns,
|
| 42 |
)
|
|
@@ -221,7 +222,7 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
| 221 |
"""
|
| 222 |
if dataframe is None or dataframe.empty:
|
| 223 |
# Create an empty dataframe with the right columns
|
| 224 |
-
columns = [getattr(
|
| 225 |
dataframe = pd.DataFrame(columns=columns)
|
| 226 |
logger.warning("Initializing empty leaderboard")
|
| 227 |
|
|
@@ -234,20 +235,20 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
| 234 |
dataframe = dataframe.copy()
|
| 235 |
dataframe["model_type"] = dataframe["model_type"].str.replace(" : ", "-")
|
| 236 |
|
| 237 |
-
if "
|
| 238 |
dataframe = dataframe.copy()
|
| 239 |
-
dataframe["
|
| 240 |
|
| 241 |
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
| 242 |
|
| 243 |
# Determine which columns to display
|
| 244 |
display_column_names = [
|
| 245 |
-
getattr(
|
| 246 |
]
|
| 247 |
-
hidden_column_names = [getattr(
|
| 248 |
|
| 249 |
# Columns that should always be shown
|
| 250 |
-
always_visible = [getattr(
|
| 251 |
|
| 252 |
# Use provided visible columns if specified, otherwise use default
|
| 253 |
if visible_columns is None:
|
|
@@ -279,11 +280,11 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
| 279 |
# Create a list of datatypes in the format Gradio expects
|
| 280 |
datatypes = []
|
| 281 |
for col in visible_columns:
|
| 282 |
-
# Find the corresponding
|
| 283 |
col_type = None
|
| 284 |
for display_col in DISPLAY_COLS:
|
| 285 |
-
if getattr(
|
| 286 |
-
orig_type = getattr(
|
| 287 |
# Map to Gradio's expected types
|
| 288 |
col_type = type_mapping.get(orig_type, "str")
|
| 289 |
break
|
|
@@ -322,7 +323,7 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
| 322 |
)
|
| 323 |
|
| 324 |
column_info_map = {
|
| 325 |
-
f.name: getattr(
|
| 326 |
}
|
| 327 |
column_mapping = {
|
| 328 |
col: column_info_map.get(col, ColumnInfo(col, col)).display_name
|
|
@@ -500,7 +501,7 @@ def submit_results(
|
|
| 500 |
mode: str,
|
| 501 |
submission_file: tempfile._TemporaryFileWrapper,
|
| 502 |
version: str,
|
| 503 |
-
|
| 504 |
):
|
| 505 |
"""
|
| 506 |
Handle submission of results with model metadata.
|
|
@@ -530,7 +531,7 @@ def submit_results(
|
|
| 530 |
"model_type": model_type,
|
| 531 |
"mode": mode,
|
| 532 |
"version": version,
|
| 533 |
-
"
|
| 534 |
}
|
| 535 |
|
| 536 |
# Process the submission
|
|
@@ -689,24 +690,23 @@ def update_visualization(selected_models, selected_category, selected_metric, ve
|
|
| 689 |
demo = gr.Blocks(css=custom_css, theme=custom_theme)
|
| 690 |
|
| 691 |
CATEGORY_DISPLAY_MAP = {
|
| 692 |
-
"
|
| 693 |
-
"
|
| 694 |
-
"
|
| 695 |
-
"
|
| 696 |
-
"
|
| 697 |
-
"
|
| 698 |
-
"
|
| 699 |
-
"
|
| 700 |
-
"
|
| 701 |
-
"
|
| 702 |
-
"
|
| 703 |
-
"
|
| 704 |
-
"
|
| 705 |
-
"
|
| 706 |
-
"
|
| 707 |
-
"
|
| 708 |
-
"
|
| 709 |
-
"Safe Prompts": "Safe Prompts",
|
| 710 |
}
|
| 711 |
# Create reverse mapping for lookups
|
| 712 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
|
@@ -720,7 +720,7 @@ with demo:
|
|
| 720 |
tabs = gr.Tabs(elem_classes="tab-buttons")
|
| 721 |
|
| 722 |
with tabs:
|
| 723 |
-
with gr.TabItem("Leaderboard", elem_id="
|
| 724 |
with gr.Row():
|
| 725 |
version_selector = gr.Dropdown(
|
| 726 |
choices=BENCHMARK_VERSIONS,
|
|
@@ -963,7 +963,7 @@ with demo:
|
|
| 963 |
],
|
| 964 |
)
|
| 965 |
|
| 966 |
-
with gr.TabItem("Visualize", elem_id="
|
| 967 |
with gr.Row():
|
| 968 |
with gr.Column():
|
| 969 |
viz_version_selector = gr.Dropdown(
|
|
@@ -1128,10 +1128,10 @@ with demo:
|
|
| 1128 |
outputs=[model_mode_selector],
|
| 1129 |
)
|
| 1130 |
|
| 1131 |
-
# with gr.TabItem("About", elem_id="
|
| 1132 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 1133 |
|
| 1134 |
-
with gr.TabItem("Submit", elem_id="
|
| 1135 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 1136 |
|
| 1137 |
with gr.Row():
|
|
@@ -1172,11 +1172,11 @@ with demo:
|
|
| 1172 |
value=None,
|
| 1173 |
interactive=True,
|
| 1174 |
)
|
| 1175 |
-
|
| 1176 |
-
choices=[t.name for t in
|
| 1177 |
-
label="
|
| 1178 |
multiselect=False,
|
| 1179 |
-
value=
|
| 1180 |
interactive=True,
|
| 1181 |
)
|
| 1182 |
|
|
@@ -1221,7 +1221,7 @@ with demo:
|
|
| 1221 |
mode_selector,
|
| 1222 |
file_input,
|
| 1223 |
submission_version_selector,
|
| 1224 |
-
|
| 1225 |
],
|
| 1226 |
outputs=result_output,
|
| 1227 |
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
CodeReview Bench Leaderboard Application
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
|
|
|
| 25 |
)
|
| 26 |
from src.display.css_html_js import custom_css
|
| 27 |
from src.display.utils import (
|
| 28 |
+
CODEREVIEW_COLUMN,
|
| 29 |
DISPLAY_COLS,
|
| 30 |
METRIC_COLS,
|
| 31 |
HIDDEN_COLS,
|
| 32 |
NEVER_HIDDEN_COLS,
|
| 33 |
CATEGORIES,
|
| 34 |
+
COMMENT_LANGUAGES,
|
| 35 |
+
EXAMPLE_CATEGORIES,
|
| 36 |
ModelType,
|
| 37 |
Mode,
|
| 38 |
Precision,
|
| 39 |
WeightType,
|
| 40 |
+
ReviewModelType,
|
| 41 |
get_all_column_choices,
|
| 42 |
get_default_visible_columns,
|
| 43 |
)
|
|
|
|
| 222 |
"""
|
| 223 |
if dataframe is None or dataframe.empty:
|
| 224 |
# Create an empty dataframe with the right columns
|
| 225 |
+
columns = [getattr(CODEREVIEW_COLUMN, col).name for col in DISPLAY_COLS]
|
| 226 |
dataframe = pd.DataFrame(columns=columns)
|
| 227 |
logger.warning("Initializing empty leaderboard")
|
| 228 |
|
|
|
|
| 235 |
dataframe = dataframe.copy()
|
| 236 |
dataframe["model_type"] = dataframe["model_type"].str.replace(" : ", "-")
|
| 237 |
|
| 238 |
+
if "review_model_type" in dataframe.columns:
|
| 239 |
dataframe = dataframe.copy()
|
| 240 |
+
dataframe["review_model_type"] = dataframe["review_model_type"].str.replace("custom", "custom")
|
| 241 |
|
| 242 |
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
| 243 |
|
| 244 |
# Determine which columns to display
|
| 245 |
display_column_names = [
|
| 246 |
+
getattr(CODEREVIEW_COLUMN, col).name for col in DISPLAY_COLS
|
| 247 |
]
|
| 248 |
+
hidden_column_names = [getattr(CODEREVIEW_COLUMN, col).name for col in HIDDEN_COLS]
|
| 249 |
|
| 250 |
# Columns that should always be shown
|
| 251 |
+
always_visible = [getattr(CODEREVIEW_COLUMN, col).name for col in NEVER_HIDDEN_COLS]
|
| 252 |
|
| 253 |
# Use provided visible columns if specified, otherwise use default
|
| 254 |
if visible_columns is None:
|
|
|
|
| 280 |
# Create a list of datatypes in the format Gradio expects
|
| 281 |
datatypes = []
|
| 282 |
for col in visible_columns:
|
| 283 |
+
# Find the corresponding CODEREVIEW_COLUMN entry
|
| 284 |
col_type = None
|
| 285 |
for display_col in DISPLAY_COLS:
|
| 286 |
+
if getattr(CODEREVIEW_COLUMN, display_col).name == col:
|
| 287 |
+
orig_type = getattr(CODEREVIEW_COLUMN, display_col).type
|
| 288 |
# Map to Gradio's expected types
|
| 289 |
col_type = type_mapping.get(orig_type, "str")
|
| 290 |
break
|
|
|
|
| 323 |
)
|
| 324 |
|
| 325 |
column_info_map = {
|
| 326 |
+
f.name: getattr(CODEREVIEW_COLUMN, f.name) for f in fields(CODEREVIEW_COLUMN)
|
| 327 |
}
|
| 328 |
column_mapping = {
|
| 329 |
col: column_info_map.get(col, ColumnInfo(col, col)).display_name
|
|
|
|
| 501 |
mode: str,
|
| 502 |
submission_file: tempfile._TemporaryFileWrapper,
|
| 503 |
version: str,
|
| 504 |
+
review_model_type: ReviewModelType,
|
| 505 |
):
|
| 506 |
"""
|
| 507 |
Handle submission of results with model metadata.
|
|
|
|
| 531 |
"model_type": model_type,
|
| 532 |
"mode": mode,
|
| 533 |
"version": version,
|
| 534 |
+
"review_model_type": review_model_type,
|
| 535 |
}
|
| 536 |
|
| 537 |
# Process the submission
|
|
|
|
| 690 |
demo = gr.Blocks(css=custom_css, theme=custom_theme)
|
| 691 |
|
| 692 |
CATEGORY_DISPLAY_MAP = {
|
| 693 |
+
"Python": "Python",
|
| 694 |
+
"JavaScript": "JavaScript",
|
| 695 |
+
"Java": "Java",
|
| 696 |
+
"C++": "C++",
|
| 697 |
+
"C#": "C#",
|
| 698 |
+
"TypeScript": "TypeScript",
|
| 699 |
+
"Go": "Go",
|
| 700 |
+
"Rust": "Rust",
|
| 701 |
+
"Swift": "Swift",
|
| 702 |
+
"Kotlin": "Kotlin",
|
| 703 |
+
"Ruby": "Ruby",
|
| 704 |
+
"PHP": "PHP",
|
| 705 |
+
"C": "C",
|
| 706 |
+
"Scala": "Scala",
|
| 707 |
+
"R": "R",
|
| 708 |
+
"Dart": "Dart",
|
| 709 |
+
"Other": "Other"
|
|
|
|
| 710 |
}
|
| 711 |
# Create reverse mapping for lookups
|
| 712 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
|
|
|
| 720 |
tabs = gr.Tabs(elem_classes="tab-buttons")
|
| 721 |
|
| 722 |
with tabs:
|
| 723 |
+
with gr.TabItem("Leaderboard", elem_id="codereview-leaderboard-tab", id=0):
|
| 724 |
with gr.Row():
|
| 725 |
version_selector = gr.Dropdown(
|
| 726 |
choices=BENCHMARK_VERSIONS,
|
|
|
|
| 963 |
],
|
| 964 |
)
|
| 965 |
|
| 966 |
+
with gr.TabItem("Visualize", elem_id="codereview-viz-tab", id=1):
|
| 967 |
with gr.Row():
|
| 968 |
with gr.Column():
|
| 969 |
viz_version_selector = gr.Dropdown(
|
|
|
|
| 1128 |
outputs=[model_mode_selector],
|
| 1129 |
)
|
| 1130 |
|
| 1131 |
+
# with gr.TabItem("About", elem_id="codereview-about-tab", id=2):
|
| 1132 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 1133 |
|
| 1134 |
+
with gr.TabItem("Submit", elem_id="codereview-submit-tab", id=3):
|
| 1135 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 1136 |
|
| 1137 |
with gr.Row():
|
|
|
|
| 1172 |
value=None,
|
| 1173 |
interactive=True,
|
| 1174 |
)
|
| 1175 |
+
review_model_type = gr.Dropdown(
|
| 1176 |
+
choices=[t.name for t in ReviewModelType],
|
| 1177 |
+
label="Review model type",
|
| 1178 |
multiselect=False,
|
| 1179 |
+
value=ReviewModelType.CUSTOM.name,
|
| 1180 |
interactive=True,
|
| 1181 |
)
|
| 1182 |
|
|
|
|
| 1221 |
mode_selector,
|
| 1222 |
file_input,
|
| 1223 |
submission_version_selector,
|
| 1224 |
+
review_model_type,
|
| 1225 |
],
|
| 1226 |
outputs=result_output,
|
| 1227 |
)
|
example_submission.jsonl
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"model_name": "GPT-4-CodeReview", "programming_language": "python", "comment_language": "en", "readability": 8.5, "relevance": 9.0, "explanation_clarity": 7.8, "problem_identification": 8.2, "actionability": 8.7, "completeness": 8.0, "specificity": 7.5, "contextual_adequacy": 8.3, "consistency": 8.8, "brevity": 7.2, "pass_at_1": 0.75, "pass_at_5": 0.88, "pass_at_10": 0.92, "bleu_at_10": 0.65, "total_evaluations": 100}
|
| 2 |
+
{"model_name": "GPT-4-CodeReview", "programming_language": "javascript", "comment_language": "en", "readability": 8.2, "relevance": 8.8, "explanation_clarity": 7.5, "problem_identification": 8.0, "actionability": 8.5, "completeness": 7.8, "specificity": 7.2, "contextual_adequacy": 8.1, "consistency": 8.6, "brevity": 7.0, "pass_at_1": 0.72, "pass_at_5": 0.85, "pass_at_10": 0.90, "bleu_at_10": 0.62, "total_evaluations": 100}
|
| 3 |
+
{"model_name": "Claude-3-CodeReview", "programming_language": "python", "comment_language": "en", "readability": 8.8, "relevance": 8.5, "explanation_clarity": 8.2, "problem_identification": 8.0, "actionability": 8.3, "completeness": 8.5, "specificity": 8.0, "contextual_adequacy": 8.6, "consistency": 8.2, "brevity": 8.8, "pass_at_1": 0.78, "pass_at_5": 0.89, "pass_at_10": 0.93, "bleu_at_10": 0.68, "total_evaluations": 100}
|
| 4 |
+
{"model_name": "Llama-CodeReview", "programming_language": "java", "comment_language": "en", "readability": 7.5, "relevance": 7.8, "explanation_clarity": 7.0, "problem_identification": 7.5, "actionability": 7.2, "completeness": 7.8, "specificity": 6.8, "contextual_adequacy": 7.3, "consistency": 7.6, "brevity": 6.5, "pass_at_1": 0.65, "pass_at_5": 0.78, "pass_at_10": 0.85, "bleu_at_10": 0.55, "total_evaluations": 100}
|
requirements.txt
CHANGED
|
@@ -6,4 +6,3 @@ apscheduler>=3.10.0
|
|
| 6 |
python-dotenv>=1.0.0
|
| 7 |
plotly>=5.18.0
|
| 8 |
pydantic==2.10.6
|
| 9 |
-
circleguardbench @ git+https://github.com/whitecircle-ai/circle-guard-bench.git
|
|
|
|
| 6 |
python-dotenv>=1.0.0
|
| 7 |
plotly>=5.18.0
|
| 8 |
pydantic==2.10.6
|
|
|
src/about.py
CHANGED
|
@@ -1,54 +1,60 @@
|
|
| 1 |
"""
|
| 2 |
-
Text content for the
|
| 3 |
"""
|
| 4 |
|
| 5 |
TITLE = """
|
| 6 |
<div style="text-align: center; margin-bottom: 1rem">
|
| 7 |
-
<h1>
|
| 8 |
</div>
|
| 9 |
"""
|
| 10 |
|
| 11 |
INTRODUCTION_TEXT = """
|
| 12 |
## Introduction
|
| 13 |
|
| 14 |
-
|
| 15 |
-
This leaderboard tracks model performance across various
|
| 16 |
-
|
| 17 |
|
| 18 |
-
Models are evaluated on their ability to
|
| 19 |
-
across multiple
|
| 20 |
"""
|
| 21 |
|
| 22 |
LLM_BENCHMARKS_TEXT = """
|
| 23 |
-
|
| 24 |
|
| 25 |
-
It
|
| 26 |
|
| 27 |
-
|
| 28 |
-
"""
|
| 29 |
|
|
|
|
|
|
|
| 30 |
|
| 31 |
EVALUATION_QUEUE_TEXT = """
|
| 32 |
## Submit Your Model
|
| 33 |
|
| 34 |
-
To add your model to the
|
| 35 |
|
| 36 |
-
1. Run your evaluation using the
|
| 37 |
-
2. Upload your
|
| 38 |
3. Once validated, your model will appear on the leaderboard.
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
### ✉️✨ Ready? Upload your results below!
|
| 41 |
"""
|
| 42 |
|
| 43 |
-
CITATION_BUTTON_LABEL = "Cite
|
| 44 |
|
| 45 |
CITATION_BUTTON_TEXT = """
|
| 46 |
-
@misc{
|
| 47 |
-
author = {
|
| 48 |
-
title = {
|
| 49 |
year = {2025},
|
| 50 |
publisher = {GitHub},
|
| 51 |
journal = {GitHub repository},
|
| 52 |
-
howpublished = {\\url{https://github.com/
|
| 53 |
}
|
| 54 |
"""
|
|
|
|
| 1 |
"""
|
| 2 |
+
Text content for the CodeReview Bench Leaderboard.
|
| 3 |
"""
|
| 4 |
|
| 5 |
TITLE = """
|
| 6 |
<div style="text-align: center; margin-bottom: 1rem">
|
| 7 |
+
<h1>CodeReview Bench Leaderboard</h1>
|
| 8 |
</div>
|
| 9 |
"""
|
| 10 |
|
| 11 |
INTRODUCTION_TEXT = """
|
| 12 |
## Introduction
|
| 13 |
|
| 14 |
+
CodeReview Bench is a comprehensive benchmark for evaluating the quality and effectiveness of automated code review systems.
|
| 15 |
+
This leaderboard tracks model performance across various programming languages and review criteria,
|
| 16 |
+
including readability, relevance, explanation clarity, and actionability.
|
| 17 |
|
| 18 |
+
Models are evaluated on their ability to provide high-quality code reviews that are helpful,
|
| 19 |
+
accurate, and actionable across multiple programming languages and review categories.
|
| 20 |
"""
|
| 21 |
|
| 22 |
LLM_BENCHMARKS_TEXT = """
|
| 23 |
+
CodeReview Bench is a comprehensive benchmark for evaluating automated code review systems across programming languages and review quality dimensions.
|
| 24 |
|
| 25 |
+
It evaluates models on their ability to provide high-quality code reviews using both LLM-based multimetric evaluation (readability, relevance, explanation clarity, problem identification, actionability, completeness, specificity, contextual adequacy, consistency, brevity) and exact-match metrics (pass@1, pass@5, pass@10, BLEU@10).
|
| 26 |
|
| 27 |
+
The benchmark supports both Russian and English comment languages across 17+ programming languages including Python, JavaScript, Java, C++, TypeScript, Go, Rust, and more.
|
|
|
|
| 28 |
|
| 29 |
+
Learn more about automated code review evaluation and best practices.
|
| 30 |
+
"""
|
| 31 |
|
| 32 |
EVALUATION_QUEUE_TEXT = """
|
| 33 |
## Submit Your Model
|
| 34 |
|
| 35 |
+
To add your model to the CodeReview Bench leaderboard:
|
| 36 |
|
| 37 |
+
1. Run your evaluation using the CodeReview Bench framework
|
| 38 |
+
2. Upload your results in .jsonl format using this form.
|
| 39 |
3. Once validated, your model will appear on the leaderboard.
|
| 40 |
|
| 41 |
+
### Requirements:
|
| 42 |
+
- Results must include all required metrics: LLM-based multimetric scores and exact-match metrics
|
| 43 |
+
- Submissions should cover multiple programming languages where applicable
|
| 44 |
+
- Both Russian and English comment languages are supported
|
| 45 |
+
|
| 46 |
### ✉️✨ Ready? Upload your results below!
|
| 47 |
"""
|
| 48 |
|
| 49 |
+
CITATION_BUTTON_LABEL = "Cite CodeReview Bench"
|
| 50 |
|
| 51 |
CITATION_BUTTON_TEXT = """
|
| 52 |
+
@misc{codereviewbench2025,
|
| 53 |
+
author = {CodeReview Bench Team},
|
| 54 |
+
title = {CodeReview Bench: Comprehensive Benchmark for Automated Code Review Systems},
|
| 55 |
year = {2025},
|
| 56 |
publisher = {GitHub},
|
| 57 |
journal = {GitHub repository},
|
| 58 |
+
howpublished = {\\url{https://github.com/your-org/codereview-bench}}
|
| 59 |
}
|
| 60 |
"""
|
src/display/css_html_js.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
CSS and styling for the
|
| 3 |
"""
|
| 4 |
|
| 5 |
custom_css = """
|
|
|
|
| 1 |
"""
|
| 2 |
+
CSS and styling for the CodeReview Bench Leaderboard.
|
| 3 |
"""
|
| 4 |
|
| 5 |
custom_css = """
|
src/display/utils.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
Utility classes and functions for the
|
| 3 |
"""
|
| 4 |
|
| 5 |
from dataclasses import dataclass, field, fields
|
|
@@ -8,7 +8,7 @@ from typing import List, Optional
|
|
| 8 |
|
| 9 |
|
| 10 |
class Mode(Enum):
|
| 11 |
-
"""Inference mode for the
|
| 12 |
CoT = auto() # Chain of Thought
|
| 13 |
Strict = auto()
|
| 14 |
|
|
@@ -36,20 +36,19 @@ class ModelType(Enum):
|
|
| 36 |
return "API"
|
| 37 |
return "Unknown"
|
| 38 |
|
| 39 |
-
class GuardModelType(str, Enum):
|
| 40 |
-
"""Guard model types for the leaderboard."""
|
| 41 |
-
LLAMA_GUARD = "llama_guard"
|
| 42 |
-
CLASSIFIER = "classifier"
|
| 43 |
-
ATLA_SELENE = "atla_selene"
|
| 44 |
-
OPENAI_MODERATION = "openai_moderation"
|
| 45 |
-
LLM_REGEXP = "llm_regexp"
|
| 46 |
-
LLM_SO = "llm_so"
|
| 47 |
-
WHITECIRCLE_GUARD = "whitecircle_guard"
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
class Precision(Enum):
|
|
@@ -72,6 +71,7 @@ class WeightType(Enum):
|
|
| 72 |
Original = auto()
|
| 73 |
Delta = auto()
|
| 74 |
Adapter = auto()
|
|
|
|
| 75 |
def __str__(self):
|
| 76 |
"""String representation of the weight type."""
|
| 77 |
return self.name
|
|
@@ -89,8 +89,8 @@ class ColumnInfo:
|
|
| 89 |
|
| 90 |
|
| 91 |
@dataclass
|
| 92 |
-
class
|
| 93 |
-
"""Columns for the
|
| 94 |
# Core metadata
|
| 95 |
model_name: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 96 |
name="model_name",
|
|
@@ -118,8 +118,8 @@ class GuardBenchColumn:
|
|
| 118 |
display_name="Version",
|
| 119 |
displayed_by_default=False
|
| 120 |
))
|
| 121 |
-
|
| 122 |
-
name="
|
| 123 |
display_name="Type",
|
| 124 |
displayed_by_default=False
|
| 125 |
))
|
|
@@ -144,212 +144,168 @@ class GuardBenchColumn:
|
|
| 144 |
displayed_by_default=False
|
| 145 |
))
|
| 146 |
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
name="
|
| 150 |
-
display_name="
|
| 151 |
type="number",
|
| 152 |
-
displayed_by_default=
|
| 153 |
))
|
| 154 |
-
|
| 155 |
-
name="
|
| 156 |
-
display_name="
|
| 157 |
type="number",
|
| 158 |
-
displayed_by_default=
|
| 159 |
))
|
| 160 |
-
|
| 161 |
-
name="
|
| 162 |
-
display_name="
|
| 163 |
type="number",
|
| 164 |
-
displayed_by_default=
|
| 165 |
))
|
| 166 |
-
|
| 167 |
-
name="
|
| 168 |
-
display_name="
|
| 169 |
type="number",
|
| 170 |
-
displayed_by_default=
|
| 171 |
))
|
| 172 |
-
|
| 173 |
-
name="
|
| 174 |
-
display_name="
|
| 175 |
type="number",
|
| 176 |
-
displayed_by_default=
|
| 177 |
))
|
| 178 |
-
|
| 179 |
-
name="
|
| 180 |
-
display_name="
|
| 181 |
type="number",
|
| 182 |
-
displayed_by_default=
|
| 183 |
))
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
name="jailbreaked_prompts_f1_binary",
|
| 188 |
-
display_name="Jailbreaked_Prompts_F1_Binary",
|
| 189 |
type="number",
|
| 190 |
-
displayed_by_default=
|
| 191 |
))
|
| 192 |
-
|
| 193 |
-
name="
|
| 194 |
-
display_name="
|
| 195 |
type="number",
|
| 196 |
-
displayed_by_default=
|
| 197 |
))
|
| 198 |
-
|
| 199 |
-
name="
|
| 200 |
-
display_name="
|
| 201 |
type="number",
|
| 202 |
-
displayed_by_default=
|
| 203 |
))
|
| 204 |
-
|
| 205 |
-
name="
|
| 206 |
-
display_name="
|
| 207 |
type="number",
|
| 208 |
-
displayed_by_default=
|
| 209 |
))
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
| 213 |
type="number",
|
| 214 |
-
displayed_by_default=
|
| 215 |
))
|
| 216 |
-
|
| 217 |
-
name="
|
| 218 |
-
display_name="
|
| 219 |
type="number",
|
| 220 |
-
displayed_by_default=
|
| 221 |
))
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
name="default_answers_f1_binary",
|
| 226 |
-
display_name="Default_Answers_F1_Binary",
|
| 227 |
type="number",
|
| 228 |
-
displayed_by_default=
|
| 229 |
))
|
| 230 |
-
|
| 231 |
-
name="
|
| 232 |
-
display_name="
|
| 233 |
type="number",
|
| 234 |
-
displayed_by_default=
|
| 235 |
))
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
| 239 |
type="number",
|
| 240 |
-
displayed_by_default=
|
| 241 |
))
|
| 242 |
-
|
| 243 |
-
name="
|
| 244 |
-
display_name="
|
| 245 |
type="number",
|
| 246 |
-
displayed_by_default=
|
| 247 |
))
|
| 248 |
-
|
| 249 |
-
name="
|
| 250 |
-
display_name="
|
| 251 |
type="number",
|
| 252 |
-
displayed_by_default=
|
| 253 |
))
|
| 254 |
-
|
| 255 |
-
name="
|
| 256 |
-
display_name="
|
| 257 |
type="number",
|
| 258 |
-
displayed_by_default=
|
| 259 |
))
|
| 260 |
|
| 261 |
-
#
|
| 262 |
-
|
| 263 |
-
name="
|
| 264 |
-
display_name="
|
| 265 |
type="number",
|
| 266 |
displayed_by_default=False
|
| 267 |
))
|
| 268 |
-
|
| 269 |
-
name="
|
| 270 |
-
display_name="
|
| 271 |
type="number",
|
| 272 |
displayed_by_default=False
|
| 273 |
))
|
| 274 |
-
|
| 275 |
-
name="
|
| 276 |
-
display_name="
|
| 277 |
type="number",
|
| 278 |
displayed_by_default=False
|
| 279 |
))
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
| 283 |
type="number",
|
| 284 |
displayed_by_default=False
|
| 285 |
))
|
| 286 |
-
|
| 287 |
-
name="
|
| 288 |
-
display_name="
|
| 289 |
type="number",
|
| 290 |
displayed_by_default=False
|
| 291 |
))
|
| 292 |
-
|
| 293 |
-
name="
|
| 294 |
-
display_name="
|
| 295 |
type="number",
|
| 296 |
displayed_by_default=False
|
| 297 |
))
|
| 298 |
-
integral_score: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 299 |
-
name="integral_score",
|
| 300 |
-
display_name="Integral_Score",
|
| 301 |
-
type="number",
|
| 302 |
-
displayed_by_default=True
|
| 303 |
-
))
|
| 304 |
-
|
| 305 |
-
# Calculated overall metrics (renamed)
|
| 306 |
-
macro_accuracy: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 307 |
-
name="macro_accuracy",
|
| 308 |
-
display_name="Macro_Accuracy",
|
| 309 |
-
type="number",
|
| 310 |
-
displayed_by_default=True
|
| 311 |
-
))
|
| 312 |
-
macro_recall: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 313 |
-
name="macro_recall",
|
| 314 |
-
display_name="Macro_Recall",
|
| 315 |
-
type="number",
|
| 316 |
-
displayed_by_default=True
|
| 317 |
-
))
|
| 318 |
-
macro_precision: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 319 |
-
name="macro_precision",
|
| 320 |
-
display_name="Macro Precision",
|
| 321 |
-
type="number",
|
| 322 |
-
displayed_by_default=False
|
| 323 |
-
))
|
| 324 |
-
|
| 325 |
-
# NEW Summary Metrics
|
| 326 |
-
micro_avg_error_ratio: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 327 |
-
name="micro_avg_error_ratio",
|
| 328 |
-
display_name="Micro_Error",
|
| 329 |
-
type="number",
|
| 330 |
-
displayed_by_default=True
|
| 331 |
-
))
|
| 332 |
-
micro_avg_runtime_ms: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 333 |
-
name="micro_avg_runtime_ms",
|
| 334 |
-
display_name="Micro_Avg_time_ms",
|
| 335 |
-
type="number",
|
| 336 |
-
displayed_by_default=True
|
| 337 |
-
))
|
| 338 |
-
total_evals_count: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 339 |
-
name="total_evals_count",
|
| 340 |
-
display_name="Total_Count",
|
| 341 |
-
type="number",
|
| 342 |
-
displayed_by_default=True
|
| 343 |
-
))
|
| 344 |
|
| 345 |
|
| 346 |
# Create instances for easy access
|
| 347 |
-
|
| 348 |
|
| 349 |
# Extract column lists for different views
|
| 350 |
-
COLS = [f.name for f in fields(
|
| 351 |
-
DISPLAY_COLS = [getattr(
|
| 352 |
-
if getattr(
|
| 353 |
|
| 354 |
# Manually reorder DISPLAY_COLS to put 'mode' after 'model_name'
|
| 355 |
def reorder_display_cols():
|
|
@@ -361,51 +317,72 @@ def reorder_display_cols():
|
|
| 361 |
return cols
|
| 362 |
DISPLAY_COLS = reorder_display_cols()
|
| 363 |
|
| 364 |
-
METRIC_COLS = [getattr(
|
| 365 |
-
if getattr(
|
| 366 |
-
HIDDEN_COLS = [getattr(
|
| 367 |
-
if getattr(
|
| 368 |
-
NEVER_HIDDEN_COLS = [getattr(
|
| 369 |
-
if getattr(
|
| 370 |
|
| 371 |
-
# Categories
|
| 372 |
CATEGORIES = [
|
| 373 |
-
'
|
| 374 |
-
'
|
| 375 |
-
'
|
| 376 |
-
'
|
| 377 |
-
'
|
| 378 |
-
'
|
| 379 |
-
'
|
| 380 |
-
'
|
| 381 |
-
'
|
| 382 |
-
'
|
| 383 |
-
'
|
| 384 |
-
'
|
| 385 |
-
'
|
| 386 |
-
'
|
| 387 |
-
'
|
| 388 |
-
'
|
| 389 |
-
'
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
]
|
| 392 |
|
| 393 |
-
#
|
| 394 |
-
|
| 395 |
-
"
|
| 396 |
-
"
|
| 397 |
-
"
|
| 398 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
]
|
| 400 |
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
"
|
| 404 |
-
"
|
| 405 |
-
"
|
| 406 |
-
"error_ratio",
|
| 407 |
-
"avg_runtime_ms",
|
| 408 |
-
"accuracy"
|
| 409 |
]
|
| 410 |
|
| 411 |
def get_all_column_choices():
|
|
@@ -419,8 +396,8 @@ def get_all_column_choices():
|
|
| 419 |
|
| 420 |
default_visible_columns = get_default_visible_columns()
|
| 421 |
|
| 422 |
-
for f in fields(
|
| 423 |
-
column_info = getattr(
|
| 424 |
# Create a tuple with both the internal name and display name
|
| 425 |
if column_info.name not in default_visible_columns:
|
| 426 |
column_choices.append((column_info.name, column_info.display_name))
|
|
@@ -434,5 +411,5 @@ def get_default_visible_columns():
|
|
| 434 |
Returns:
|
| 435 |
List of column names that are displayed by default.
|
| 436 |
"""
|
| 437 |
-
return [getattr(
|
| 438 |
-
if getattr(
|
|
|
|
| 1 |
"""
|
| 2 |
+
Utility classes and functions for the CodeReview Bench Leaderboard display.
|
| 3 |
"""
|
| 4 |
|
| 5 |
from dataclasses import dataclass, field, fields
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
class Mode(Enum):
|
| 11 |
+
"""Inference mode for the review model."""
|
| 12 |
CoT = auto() # Chain of Thought
|
| 13 |
Strict = auto()
|
| 14 |
|
|
|
|
| 36 |
return "API"
|
| 37 |
return "Unknown"
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
class ReviewModelType(str, Enum):
|
| 41 |
+
"""Review model types for the leaderboard."""
|
| 42 |
+
GPT_4 = "gpt-4"
|
| 43 |
+
GPT_3_5 = "gpt-3.5-turbo"
|
| 44 |
+
CLAUDE = "claude"
|
| 45 |
+
LLAMA = "llama"
|
| 46 |
+
GEMINI = "gemini"
|
| 47 |
+
CUSTOM = "custom"
|
| 48 |
|
| 49 |
+
def __str__(self):
|
| 50 |
+
"""String representation of the review model type."""
|
| 51 |
+
return self.value
|
| 52 |
|
| 53 |
|
| 54 |
class Precision(Enum):
|
|
|
|
| 71 |
Original = auto()
|
| 72 |
Delta = auto()
|
| 73 |
Adapter = auto()
|
| 74 |
+
|
| 75 |
def __str__(self):
|
| 76 |
"""String representation of the weight type."""
|
| 77 |
return self.name
|
|
|
|
| 89 |
|
| 90 |
|
| 91 |
@dataclass
|
| 92 |
+
class CodeReviewBenchColumn:
|
| 93 |
+
"""Columns for the CodeReview Bench leaderboard."""
|
| 94 |
# Core metadata
|
| 95 |
model_name: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 96 |
name="model_name",
|
|
|
|
| 118 |
display_name="Version",
|
| 119 |
displayed_by_default=False
|
| 120 |
))
|
| 121 |
+
review_model_type: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 122 |
+
name="review_model_type",
|
| 123 |
display_name="Type",
|
| 124 |
displayed_by_default=False
|
| 125 |
))
|
|
|
|
| 144 |
displayed_by_default=False
|
| 145 |
))
|
| 146 |
|
| 147 |
+
# LLM-based multimetric scores
|
| 148 |
+
readability: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 149 |
+
name="readability",
|
| 150 |
+
display_name="Readability",
|
| 151 |
type="number",
|
| 152 |
+
displayed_by_default=True
|
| 153 |
))
|
| 154 |
+
relevance: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 155 |
+
name="relevance",
|
| 156 |
+
display_name="Relevance",
|
| 157 |
type="number",
|
| 158 |
+
displayed_by_default=True
|
| 159 |
))
|
| 160 |
+
explanation_clarity: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 161 |
+
name="explanation_clarity",
|
| 162 |
+
display_name="Explanation_Clarity",
|
| 163 |
type="number",
|
| 164 |
+
displayed_by_default=True
|
| 165 |
))
|
| 166 |
+
problem_identification: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 167 |
+
name="problem_identification",
|
| 168 |
+
display_name="Problem_Identification",
|
| 169 |
type="number",
|
| 170 |
+
displayed_by_default=True
|
| 171 |
))
|
| 172 |
+
actionability: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 173 |
+
name="actionability",
|
| 174 |
+
display_name="Actionability",
|
| 175 |
type="number",
|
| 176 |
+
displayed_by_default=True
|
| 177 |
))
|
| 178 |
+
completeness: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 179 |
+
name="completeness",
|
| 180 |
+
display_name="Completeness",
|
| 181 |
type="number",
|
| 182 |
+
displayed_by_default=True
|
| 183 |
))
|
| 184 |
+
specificity: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 185 |
+
name="specificity",
|
| 186 |
+
display_name="Specificity",
|
|
|
|
|
|
|
| 187 |
type="number",
|
| 188 |
+
displayed_by_default=True
|
| 189 |
))
|
| 190 |
+
contextual_adequacy: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 191 |
+
name="contextual_adequacy",
|
| 192 |
+
display_name="Contextual_Adequacy",
|
| 193 |
type="number",
|
| 194 |
+
displayed_by_default=True
|
| 195 |
))
|
| 196 |
+
consistency: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 197 |
+
name="consistency",
|
| 198 |
+
display_name="Consistency",
|
| 199 |
type="number",
|
| 200 |
+
displayed_by_default=True
|
| 201 |
))
|
| 202 |
+
brevity: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 203 |
+
name="brevity",
|
| 204 |
+
display_name="Brevity",
|
| 205 |
type="number",
|
| 206 |
+
displayed_by_default=True
|
| 207 |
))
|
| 208 |
+
|
| 209 |
+
# LLM-based-exact-match metrics
|
| 210 |
+
pass_at_1: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 211 |
+
name="pass_at_1",
|
| 212 |
+
display_name="Pass@1",
|
| 213 |
type="number",
|
| 214 |
+
displayed_by_default=True
|
| 215 |
))
|
| 216 |
+
pass_at_5: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 217 |
+
name="pass_at_5",
|
| 218 |
+
display_name="Pass@5",
|
| 219 |
type="number",
|
| 220 |
+
displayed_by_default=True
|
| 221 |
))
|
| 222 |
+
pass_at_10: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 223 |
+
name="pass_at_10",
|
| 224 |
+
display_name="Pass@10",
|
|
|
|
|
|
|
| 225 |
type="number",
|
| 226 |
+
displayed_by_default=True
|
| 227 |
))
|
| 228 |
+
bleu_at_10: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 229 |
+
name="bleu_at_10",
|
| 230 |
+
display_name="BLEU@10",
|
| 231 |
type="number",
|
| 232 |
+
displayed_by_default=True
|
| 233 |
))
|
| 234 |
+
|
| 235 |
+
# Overall aggregated metrics
|
| 236 |
+
overall_score: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 237 |
+
name="overall_score",
|
| 238 |
+
display_name="Overall_Score",
|
| 239 |
type="number",
|
| 240 |
+
displayed_by_default=True
|
| 241 |
))
|
| 242 |
+
multimetric_average: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 243 |
+
name="multimetric_average",
|
| 244 |
+
display_name="Multimetric_Average",
|
| 245 |
type="number",
|
| 246 |
+
displayed_by_default=True
|
| 247 |
))
|
| 248 |
+
exact_match_average: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 249 |
+
name="exact_match_average",
|
| 250 |
+
display_name="Exact_Match_Average",
|
| 251 |
type="number",
|
| 252 |
+
displayed_by_default=True
|
| 253 |
))
|
| 254 |
+
total_evaluations: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 255 |
+
name="total_evaluations",
|
| 256 |
+
display_name="Total_Evaluations",
|
| 257 |
type="number",
|
| 258 |
+
displayed_by_default=True
|
| 259 |
))
|
| 260 |
|
| 261 |
+
# Language-specific metrics (Russian)
|
| 262 |
+
ru_readability: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 263 |
+
name="ru_readability",
|
| 264 |
+
display_name="RU_Readability",
|
| 265 |
type="number",
|
| 266 |
displayed_by_default=False
|
| 267 |
))
|
| 268 |
+
ru_relevance: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 269 |
+
name="ru_relevance",
|
| 270 |
+
display_name="RU_Relevance",
|
| 271 |
type="number",
|
| 272 |
displayed_by_default=False
|
| 273 |
))
|
| 274 |
+
ru_overall_score: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 275 |
+
name="ru_overall_score",
|
| 276 |
+
display_name="RU_Overall_Score",
|
| 277 |
type="number",
|
| 278 |
displayed_by_default=False
|
| 279 |
))
|
| 280 |
+
|
| 281 |
+
# Language-specific metrics (English)
|
| 282 |
+
en_readability: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 283 |
+
name="en_readability",
|
| 284 |
+
display_name="EN_Readability",
|
| 285 |
type="number",
|
| 286 |
displayed_by_default=False
|
| 287 |
))
|
| 288 |
+
en_relevance: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 289 |
+
name="en_relevance",
|
| 290 |
+
display_name="EN_Relevance",
|
| 291 |
type="number",
|
| 292 |
displayed_by_default=False
|
| 293 |
))
|
| 294 |
+
en_overall_score: ColumnInfo = field(default_factory=lambda: ColumnInfo(
|
| 295 |
+
name="en_overall_score",
|
| 296 |
+
display_name="EN_Overall_Score",
|
| 297 |
type="number",
|
| 298 |
displayed_by_default=False
|
| 299 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
|
| 302 |
# Create instances for easy access
|
| 303 |
+
CODEREVIEW_COLUMN = CodeReviewBenchColumn()
|
| 304 |
|
| 305 |
# Extract column lists for different views
|
| 306 |
+
COLS = [f.name for f in fields(CODEREVIEW_COLUMN)]
|
| 307 |
+
DISPLAY_COLS = [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(CODEREVIEW_COLUMN)
|
| 308 |
+
if getattr(CODEREVIEW_COLUMN, f.name).displayed_by_default]
|
| 309 |
|
| 310 |
# Manually reorder DISPLAY_COLS to put 'mode' after 'model_name'
|
| 311 |
def reorder_display_cols():
|
|
|
|
| 317 |
return cols
|
| 318 |
DISPLAY_COLS = reorder_display_cols()
|
| 319 |
|
| 320 |
+
METRIC_COLS = [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(CODEREVIEW_COLUMN)
|
| 321 |
+
if getattr(CODEREVIEW_COLUMN, f.name).type == "number"]
|
| 322 |
+
HIDDEN_COLS = [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(CODEREVIEW_COLUMN)
|
| 323 |
+
if getattr(CODEREVIEW_COLUMN, f.name).hidden]
|
| 324 |
+
NEVER_HIDDEN_COLS = [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(CODEREVIEW_COLUMN)
|
| 325 |
+
if getattr(CODEREVIEW_COLUMN, f.name).never_hidden]
|
| 326 |
|
| 327 |
+
# Categories for CodeReview Bench (Programming Languages)
|
| 328 |
CATEGORIES = [
|
| 329 |
+
'Python',
|
| 330 |
+
'JavaScript',
|
| 331 |
+
'Java',
|
| 332 |
+
'C++',
|
| 333 |
+
'C#',
|
| 334 |
+
'TypeScript',
|
| 335 |
+
'Go',
|
| 336 |
+
'Rust',
|
| 337 |
+
'Swift',
|
| 338 |
+
'Kotlin',
|
| 339 |
+
'Ruby',
|
| 340 |
+
'PHP',
|
| 341 |
+
'C',
|
| 342 |
+
'Scala',
|
| 343 |
+
'R',
|
| 344 |
+
'Dart',
|
| 345 |
+
'Other'
|
| 346 |
+
]
|
| 347 |
+
|
| 348 |
+
# Language taxonomies for CodeReview Bench
|
| 349 |
+
COMMENT_LANGUAGES = [
|
| 350 |
+
'ru', # Russian
|
| 351 |
+
'en' # English
|
| 352 |
+
]
|
| 353 |
+
|
| 354 |
+
# Example categories
|
| 355 |
+
EXAMPLE_CATEGORIES = [
|
| 356 |
+
'Bug_Fix',
|
| 357 |
+
'Code_Style',
|
| 358 |
+
'Performance',
|
| 359 |
+
'Security',
|
| 360 |
+
'Refactoring',
|
| 361 |
+
'Documentation',
|
| 362 |
+
'Testing',
|
| 363 |
+
'Architecture',
|
| 364 |
+
'Other'
|
| 365 |
]
|
| 366 |
|
| 367 |
+
# Metrics for CodeReview Bench
|
| 368 |
+
MULTIMETRIC_METRICS = [
|
| 369 |
+
"readability",
|
| 370 |
+
"relevance",
|
| 371 |
+
"explanation_clarity",
|
| 372 |
+
"problem_identification",
|
| 373 |
+
"actionability",
|
| 374 |
+
"completeness",
|
| 375 |
+
"specificity",
|
| 376 |
+
"contextual_adequacy",
|
| 377 |
+
"consistency",
|
| 378 |
+
"brevity"
|
| 379 |
]
|
| 380 |
|
| 381 |
+
EXACT_MATCH_METRICS = [
|
| 382 |
+
"pass_at_1",
|
| 383 |
+
"pass_at_5",
|
| 384 |
+
"pass_at_10",
|
| 385 |
+
"bleu_at_10"
|
|
|
|
|
|
|
|
|
|
| 386 |
]
|
| 387 |
|
| 388 |
def get_all_column_choices():
|
|
|
|
| 396 |
|
| 397 |
default_visible_columns = get_default_visible_columns()
|
| 398 |
|
| 399 |
+
for f in fields(CODEREVIEW_COLUMN):
|
| 400 |
+
column_info = getattr(CODEREVIEW_COLUMN, f.name)
|
| 401 |
# Create a tuple with both the internal name and display name
|
| 402 |
if column_info.name not in default_visible_columns:
|
| 403 |
column_choices.append((column_info.name, column_info.display_name))
|
|
|
|
| 411 |
Returns:
|
| 412 |
List of column names that are displayed by default.
|
| 413 |
"""
|
| 414 |
+
return [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(CODEREVIEW_COLUMN)
|
| 415 |
+
if getattr(CODEREVIEW_COLUMN, f.name).displayed_by_default]
|
src/envs.py
CHANGED
|
@@ -7,14 +7,14 @@ load_dotenv()
|
|
| 7 |
|
| 8 |
# Hugging Face configuration
|
| 9 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 10 |
-
OWNER = os.environ.get("OWNER", "
|
| 11 |
SUBMITTER_TOKEN = os.environ.get("SUBMITTER_TOKEN")
|
| 12 |
ADMIN_USERNAME = os.environ.get("ADMIN_USERNAME")
|
| 13 |
ADMIN_PASSWORD = os.environ.get("ADMIN_PASSWORD")
|
| 14 |
|
| 15 |
# Repository IDs
|
| 16 |
-
REPO_ID = f"{OWNER}/
|
| 17 |
-
RESULTS_DATASET_ID = os.environ.get("RESULTS_DATASET_ID", f"{OWNER}/
|
| 18 |
|
| 19 |
# Cache paths
|
| 20 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
|
|
|
| 7 |
|
| 8 |
# Hugging Face configuration
|
| 9 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 10 |
+
OWNER = os.environ.get("OWNER", "codereview-bench") # Change to your org
|
| 11 |
SUBMITTER_TOKEN = os.environ.get("SUBMITTER_TOKEN")
|
| 12 |
ADMIN_USERNAME = os.environ.get("ADMIN_USERNAME")
|
| 13 |
ADMIN_PASSWORD = os.environ.get("ADMIN_PASSWORD")
|
| 14 |
|
| 15 |
# Repository IDs
|
| 16 |
+
REPO_ID = f"{OWNER}/codereview-bench"
|
| 17 |
+
RESULTS_DATASET_ID = os.environ.get("RESULTS_DATASET_ID", f"{OWNER}/codereview-bench-results")
|
| 18 |
|
| 19 |
# Cache paths
|
| 20 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
src/leaderboard/processor.py
CHANGED
|
@@ -1,81 +1,98 @@
|
|
| 1 |
"""
|
| 2 |
-
Process
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
| 6 |
import os
|
| 7 |
import pandas as pd
|
| 8 |
from datetime import datetime
|
| 9 |
-
from typing import Dict, List,
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
-
from src.display.utils import
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
# Constants for Integral Score calculation (mirrors guardbench library)
|
| 15 |
-
MAX_PUNISHABLE_RUNTIME_MS = 6000.0
|
| 16 |
-
MIN_PUNISHABLE_RUNTIME_MS = 200.0
|
| 17 |
-
MAX_RUNTIME_PENALTY = 0.75 # Corresponds to 1.0 - MIN_TIME_FACTOR, library used 0.75
|
| 18 |
|
| 19 |
-
def
|
| 20 |
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
if MAX_PUNISHABLE_RUNTIME_MS > MIN_PUNISHABLE_RUNTIME_MS:
|
| 64 |
-
normalized_time = (runtime - MIN_PUNISHABLE_RUNTIME_MS) / (
|
| 65 |
-
MAX_PUNISHABLE_RUNTIME_MS - MIN_PUNISHABLE_RUNTIME_MS
|
| 66 |
-
)
|
| 67 |
-
# Match reference library formula 1
|
| 68 |
-
time_factor = 1.0 - (1.0 - MAX_RUNTIME_PENALTY) * normalized_time
|
| 69 |
-
else:
|
| 70 |
-
# Match reference library formula (though less critical when max==min)
|
| 71 |
-
time_factor = 1.0 if runtime <= MIN_PUNISHABLE_RUNTIME_MS else (1.0 - MAX_RUNTIME_PENALTY)
|
| 72 |
|
| 73 |
-
# Match reference library formula 2 (enforce minimum factor)
|
| 74 |
-
time_factor = max(MAX_RUNTIME_PENALTY, time_factor)
|
| 75 |
-
integral_score *= time_factor
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
def load_leaderboard_data(file_path: str) -> Dict:
|
|
@@ -122,40 +139,6 @@ def save_leaderboard_data(data: Dict, file_path: str) -> None:
|
|
| 122 |
json.dump(data, f, indent=2)
|
| 123 |
|
| 124 |
|
| 125 |
-
def process_submission(submission_data: List[Dict]) -> List[Dict]:
|
| 126 |
-
"""
|
| 127 |
-
Process submission data and convert it to leaderboard entries.
|
| 128 |
-
"""
|
| 129 |
-
entries = []
|
| 130 |
-
|
| 131 |
-
for item in submission_data:
|
| 132 |
-
# Create a new entry for the leaderboard
|
| 133 |
-
entry = {
|
| 134 |
-
"model_name": item.get("model_name", "Unknown Model"),
|
| 135 |
-
"per_category_metrics": {},
|
| 136 |
-
"avg_metrics": {},
|
| 137 |
-
"submission_date": datetime.now().isoformat(),
|
| 138 |
-
"version": item.get("version", "v0")
|
| 139 |
-
}
|
| 140 |
-
|
| 141 |
-
# Copy model metadata
|
| 142 |
-
for key in ["model_type", "base_model", "revision", "precision", "weight_type"]:
|
| 143 |
-
if key in item:
|
| 144 |
-
entry[key] = item[key]
|
| 145 |
-
|
| 146 |
-
# Process per-category metrics
|
| 147 |
-
if "per_category_metrics" in item:
|
| 148 |
-
entry["per_category_metrics"] = item["per_category_metrics"]
|
| 149 |
-
|
| 150 |
-
# Process average metrics
|
| 151 |
-
if "avg_metrics" in item:
|
| 152 |
-
entry["avg_metrics"] = item["avg_metrics"]
|
| 153 |
-
|
| 154 |
-
entries.append(entry)
|
| 155 |
-
|
| 156 |
-
return entries
|
| 157 |
-
|
| 158 |
-
|
| 159 |
def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
|
| 160 |
"""
|
| 161 |
Convert leaderboard data to a pandas DataFrame for display.
|
|
@@ -165,14 +148,14 @@ def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
|
|
| 165 |
for entry in leaderboard_data.get("entries", []):
|
| 166 |
model_name = entry.get("model_name", "Unknown Model")
|
| 167 |
|
| 168 |
-
# Extract
|
| 169 |
row = {
|
| 170 |
"model_name": model_name,
|
| 171 |
"model_type": entry.get("model_type", "Unknown"),
|
| 172 |
"mode": entry.get("mode", "Strict"),
|
| 173 |
"submission_date": entry.get("submission_date", ""),
|
| 174 |
"version": entry.get("version", "v0"),
|
| 175 |
-
"
|
| 176 |
}
|
| 177 |
|
| 178 |
# Add additional metadata fields if present
|
|
@@ -180,117 +163,69 @@ def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
|
|
| 180 |
if key in entry:
|
| 181 |
row[key] = entry[key]
|
| 182 |
|
| 183 |
-
#
|
| 184 |
-
for
|
| 185 |
-
if
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
row[
|
| 189 |
-
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
if "macro_recall" not in row:
|
| 226 |
-
recall_values = []
|
| 227 |
-
for test_type in TEST_TYPES:
|
| 228 |
-
if test_type in avg_metrics and "recall_binary" in avg_metrics[test_type] and pd.notna(avg_metrics[test_type]["recall_binary"]):
|
| 229 |
-
recall_values.append(avg_metrics[test_type]["recall_binary"])
|
| 230 |
-
if recall_values:
|
| 231 |
-
row["macro_recall"] = sum(recall_values) / len(recall_values)
|
| 232 |
-
|
| 233 |
-
if "total_evals_count" not in row:
|
| 234 |
-
total_samples = 0
|
| 235 |
-
found_samples = False
|
| 236 |
-
for test_type in TEST_TYPES:
|
| 237 |
-
if test_type in avg_metrics and "sample_count" in avg_metrics[test_type] and pd.notna(avg_metrics[test_type]["sample_count"]):
|
| 238 |
-
total_samples += avg_metrics[test_type]["sample_count"]
|
| 239 |
-
found_samples = True
|
| 240 |
-
if found_samples:
|
| 241 |
-
row["total_evals_count"] = total_samples
|
| 242 |
-
|
| 243 |
-
# Extract micro averages directly from entry if they exist (like in guardbench library)
|
| 244 |
-
row["micro_avg_error_ratio"] = entry.get("micro_avg_error_ratio", pd.NA)
|
| 245 |
-
row["micro_avg_runtime_ms"] = entry.get("micro_avg_runtime_ms", pd.NA)
|
| 246 |
-
|
| 247 |
-
# Convert error ratio to percentage for consistency with display name
|
| 248 |
-
if pd.notna(row["micro_avg_error_ratio"]):
|
| 249 |
-
row["micro_avg_error_ratio"] *= 100
|
| 250 |
|
| 251 |
rows.append(row)
|
| 252 |
|
| 253 |
-
# Create DataFrame and sort by
|
| 254 |
df = pd.DataFrame(rows)
|
| 255 |
|
| 256 |
# Ensure all expected columns exist
|
| 257 |
-
for
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
if col_name not in df.columns:
|
| 261 |
-
df[col_name] = pd.NA # Use pd.NA for missing numeric data
|
| 262 |
-
|
| 263 |
-
# Add non-binary F1 if binary exists and f1 is missing
|
| 264 |
-
if metric == "f1_binary" and f"{test_type}_f1" not in df.columns:
|
| 265 |
-
# Check if the binary column has data before copying
|
| 266 |
-
if col_name in df.columns:
|
| 267 |
-
df[f"{test_type}_f1"] = df[col_name]
|
| 268 |
-
else:
|
| 269 |
-
df[f"{test_type}_f1"] = pd.NA
|
| 270 |
|
| 271 |
-
#
|
| 272 |
if not df.empty:
|
| 273 |
-
df
|
| 274 |
-
# Sort by Integral Score instead of average_f1
|
| 275 |
-
df = df.sort_values(by="integral_score", ascending=False, na_position='last')
|
| 276 |
-
else:
|
| 277 |
-
# Add the column even if empty
|
| 278 |
-
df["integral_score"] = pd.NA
|
| 279 |
|
| 280 |
# Ensure summary columns exist
|
| 281 |
-
summary_cols = ["
|
| 282 |
for col in summary_cols:
|
| 283 |
if col not in df.columns:
|
| 284 |
df[col] = pd.NA
|
| 285 |
|
| 286 |
-
# Remove old average columns if they somehow snuck in
|
| 287 |
-
old_avg_cols = ["average_f1", "average_recall", "average_precision"]
|
| 288 |
-
for col in old_avg_cols:
|
| 289 |
-
if col in df.columns:
|
| 290 |
-
df = df.drop(columns=[col])
|
| 291 |
-
# print("--- DataFrame before returning from leaderboard_to_dataframe ---")
|
| 292 |
-
# print(df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head())
|
| 293 |
-
# print("-------------------------------------------------------------")
|
| 294 |
return df
|
| 295 |
|
| 296 |
|
|
@@ -309,6 +244,18 @@ def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict])
|
|
| 309 |
model_name = new_entry.get("model_name")
|
| 310 |
version = new_entry.get("version", "v0")
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
if (model_name, version) in existing_entries:
|
| 313 |
# Replace existing entry
|
| 314 |
leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
|
|
@@ -322,25 +269,3 @@ def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict])
|
|
| 322 |
leaderboard_data["last_updated"] = datetime.now().isoformat()
|
| 323 |
|
| 324 |
return leaderboard_data
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
|
| 328 |
-
"""
|
| 329 |
-
Process a JSONL submission file and extract entries.
|
| 330 |
-
"""
|
| 331 |
-
entries = []
|
| 332 |
-
try:
|
| 333 |
-
with open(file_path, 'r') as f:
|
| 334 |
-
for line in f:
|
| 335 |
-
try:
|
| 336 |
-
entry = json.loads(line)
|
| 337 |
-
entries.append(entry)
|
| 338 |
-
except json.JSONDecodeError as e:
|
| 339 |
-
return [], f"Invalid JSON in submission file: {e}"
|
| 340 |
-
|
| 341 |
-
if not entries:
|
| 342 |
-
return [], "Submission file is empty"
|
| 343 |
-
|
| 344 |
-
return entries, "Successfully processed submission"
|
| 345 |
-
except Exception as e:
|
| 346 |
-
return [], f"Error processing submission file: {e}"
|
|
|
|
| 1 |
"""
|
| 2 |
+
Process CodeReview Bench leaderboard data and submissions.
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
| 6 |
import os
|
| 7 |
import pandas as pd
|
| 8 |
from datetime import datetime
|
| 9 |
+
from typing import Dict, List, Tuple, Optional
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
+
from src.display.utils import (
|
| 13 |
+
CODEREVIEW_COLUMN, DISPLAY_COLS, CATEGORIES, COMMENT_LANGUAGES, EXAMPLE_CATEGORIES,
|
| 14 |
+
MULTIMETRIC_METRICS, EXACT_MATCH_METRICS
|
| 15 |
+
)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
|
| 19 |
"""
|
| 20 |
+
Process a JSONL submission file for CodeReview Bench.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
file_path: Path to the JSONL submission file
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
Tuple of (entries_list, message)
|
| 27 |
"""
|
| 28 |
+
try:
|
| 29 |
+
entries = []
|
| 30 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 31 |
+
for line_num, line in enumerate(f, 1):
|
| 32 |
+
line = line.strip()
|
| 33 |
+
if not line:
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
entry = json.loads(line)
|
| 38 |
+
|
| 39 |
+
# Validate required fields
|
| 40 |
+
required_fields = ['model_name', 'programming_language', 'comment_language']
|
| 41 |
+
missing_fields = [field for field in required_fields if field not in entry]
|
| 42 |
+
if missing_fields:
|
| 43 |
+
return [], f"Missing required fields {missing_fields} in line {line_num}"
|
| 44 |
+
|
| 45 |
+
# Validate metrics exist
|
| 46 |
+
has_multimetric = any(metric in entry for metric in MULTIMETRIC_METRICS)
|
| 47 |
+
has_exact_match = any(metric in entry for metric in EXACT_MATCH_METRICS)
|
| 48 |
+
|
| 49 |
+
if not has_multimetric and not has_exact_match:
|
| 50 |
+
return [], f"No valid metrics found in line {line_num}. Required: {MULTIMETRIC_METRICS + EXACT_MATCH_METRICS}"
|
| 51 |
+
|
| 52 |
+
entries.append(entry)
|
| 53 |
+
|
| 54 |
+
except json.JSONDecodeError as e:
|
| 55 |
+
return [], f"Invalid JSON in line {line_num}: {e}"
|
| 56 |
+
|
| 57 |
+
if not entries:
|
| 58 |
+
return [], "No valid entries found in submission file"
|
| 59 |
+
|
| 60 |
+
return entries, f"Successfully processed {len(entries)} entries"
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
return [], f"Error processing submission: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
def calculate_overall_score(entry: Dict) -> float:
|
| 67 |
+
"""
|
| 68 |
+
Calculate overall score for a CodeReview Bench entry.
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
entry: Dictionary containing model evaluation results
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
Overall score as float
|
| 75 |
+
"""
|
| 76 |
+
# Calculate multimetric average
|
| 77 |
+
multimetric_scores = []
|
| 78 |
+
for metric in MULTIMETRIC_METRICS:
|
| 79 |
+
if metric in entry and isinstance(entry[metric], (int, float)):
|
| 80 |
+
multimetric_scores.append(entry[metric])
|
| 81 |
+
|
| 82 |
+
multimetric_avg = np.mean(multimetric_scores) if multimetric_scores else 0
|
| 83 |
+
|
| 84 |
+
# Calculate exact match average
|
| 85 |
+
exact_match_scores = []
|
| 86 |
+
for metric in EXACT_MATCH_METRICS:
|
| 87 |
+
if metric in entry and isinstance(entry[metric], (int, float)):
|
| 88 |
+
exact_match_scores.append(entry[metric])
|
| 89 |
+
|
| 90 |
+
exact_match_avg = np.mean(exact_match_scores) if exact_match_scores else 0
|
| 91 |
+
|
| 92 |
+
# Weighted combination (can be adjusted based on requirements)
|
| 93 |
+
overall_score = (multimetric_avg * 0.7) + (exact_match_avg * 0.3)
|
| 94 |
+
|
| 95 |
+
return overall_score
|
| 96 |
|
| 97 |
|
| 98 |
def load_leaderboard_data(file_path: str) -> Dict:
|
|
|
|
| 139 |
json.dump(data, f, indent=2)
|
| 140 |
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
|
| 143 |
"""
|
| 144 |
Convert leaderboard data to a pandas DataFrame for display.
|
|
|
|
| 148 |
for entry in leaderboard_data.get("entries", []):
|
| 149 |
model_name = entry.get("model_name", "Unknown Model")
|
| 150 |
|
| 151 |
+
# Extract basic metadata
|
| 152 |
row = {
|
| 153 |
"model_name": model_name,
|
| 154 |
"model_type": entry.get("model_type", "Unknown"),
|
| 155 |
"mode": entry.get("mode", "Strict"),
|
| 156 |
"submission_date": entry.get("submission_date", ""),
|
| 157 |
"version": entry.get("version", "v0"),
|
| 158 |
+
"review_model_type": entry.get("review_model_type", "custom").lower()
|
| 159 |
}
|
| 160 |
|
| 161 |
# Add additional metadata fields if present
|
|
|
|
| 163 |
if key in entry:
|
| 164 |
row[key] = entry[key]
|
| 165 |
|
| 166 |
+
# Add multimetric scores
|
| 167 |
+
for metric in MULTIMETRIC_METRICS:
|
| 168 |
+
if metric in entry:
|
| 169 |
+
row[metric] = entry[metric]
|
| 170 |
+
else:
|
| 171 |
+
row[metric] = pd.NA
|
| 172 |
+
|
| 173 |
+
# Add exact match metrics
|
| 174 |
+
for metric in EXACT_MATCH_METRICS:
|
| 175 |
+
if metric in entry:
|
| 176 |
+
row[metric] = entry[metric]
|
| 177 |
+
else:
|
| 178 |
+
row[metric] = pd.NA
|
| 179 |
+
|
| 180 |
+
# Calculate aggregated metrics
|
| 181 |
+
multimetric_scores = [entry.get(metric, 0) for metric in MULTIMETRIC_METRICS if metric in entry and pd.notna(entry[metric])]
|
| 182 |
+
exact_match_scores = [entry.get(metric, 0) for metric in EXACT_MATCH_METRICS if metric in entry and pd.notna(entry[metric])]
|
| 183 |
+
|
| 184 |
+
if multimetric_scores:
|
| 185 |
+
row["multimetric_average"] = np.mean(multimetric_scores)
|
| 186 |
+
else:
|
| 187 |
+
row["multimetric_average"] = pd.NA
|
| 188 |
+
|
| 189 |
+
if exact_match_scores:
|
| 190 |
+
row["exact_match_average"] = np.mean(exact_match_scores)
|
| 191 |
+
else:
|
| 192 |
+
row["exact_match_average"] = pd.NA
|
| 193 |
+
|
| 194 |
+
# Calculate overall score
|
| 195 |
+
row["overall_score"] = calculate_overall_score(entry)
|
| 196 |
+
|
| 197 |
+
# Add language-specific metrics if available
|
| 198 |
+
for lang in COMMENT_LANGUAGES:
|
| 199 |
+
for metric in ["readability", "relevance", "overall_score"]:
|
| 200 |
+
lang_key = f"{lang}_{metric}"
|
| 201 |
+
if lang_key in entry:
|
| 202 |
+
row[lang_key] = entry[lang_key]
|
| 203 |
+
else:
|
| 204 |
+
row[lang_key] = pd.NA
|
| 205 |
+
|
| 206 |
+
# Add evaluation count
|
| 207 |
+
row["total_evaluations"] = entry.get("total_evaluations", entry.get("evaluation_count", pd.NA))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
rows.append(row)
|
| 210 |
|
| 211 |
+
# Create DataFrame and sort by overall score
|
| 212 |
df = pd.DataFrame(rows)
|
| 213 |
|
| 214 |
# Ensure all expected columns exist
|
| 215 |
+
for metric in MULTIMETRIC_METRICS + EXACT_MATCH_METRICS:
|
| 216 |
+
if metric not in df.columns:
|
| 217 |
+
df[metric] = pd.NA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
+
# Sort by overall score (descending)
|
| 220 |
if not df.empty:
|
| 221 |
+
df = df.sort_values(by="overall_score", ascending=False, na_position='last')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# Ensure summary columns exist
|
| 224 |
+
summary_cols = ["overall_score", "multimetric_average", "exact_match_average", "total_evaluations"]
|
| 225 |
for col in summary_cols:
|
| 226 |
if col not in df.columns:
|
| 227 |
df[col] = pd.NA
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
return df
|
| 230 |
|
| 231 |
|
|
|
|
| 244 |
model_name = new_entry.get("model_name")
|
| 245 |
version = new_entry.get("version", "v0")
|
| 246 |
|
| 247 |
+
# Add calculated metrics
|
| 248 |
+
new_entry["overall_score"] = calculate_overall_score(new_entry)
|
| 249 |
+
|
| 250 |
+
# Calculate averages
|
| 251 |
+
multimetric_scores = [new_entry.get(metric) for metric in MULTIMETRIC_METRICS if metric in new_entry and pd.notna(new_entry[metric])]
|
| 252 |
+
exact_match_scores = [new_entry.get(metric) for metric in EXACT_MATCH_METRICS if metric in new_entry and pd.notna(new_entry[metric])]
|
| 253 |
+
|
| 254 |
+
if multimetric_scores:
|
| 255 |
+
new_entry["multimetric_average"] = np.mean(multimetric_scores)
|
| 256 |
+
if exact_match_scores:
|
| 257 |
+
new_entry["exact_match_average"] = np.mean(exact_match_scores)
|
| 258 |
+
|
| 259 |
if (model_name, version) in existing_entries:
|
| 260 |
# Replace existing entry
|
| 261 |
leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
|
|
|
|
| 269 |
leaderboard_data["last_updated"] = datetime.now().isoformat()
|
| 270 |
|
| 271 |
return leaderboard_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
Populate the
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
|
@@ -13,7 +13,7 @@ import numpy as np
|
|
| 13 |
from huggingface_hub import hf_hub_download, HfApi
|
| 14 |
from datasets import load_dataset
|
| 15 |
|
| 16 |
-
from src.display.utils import
|
| 17 |
from src.envs import RESULTS_DATASET_ID, TOKEN, CACHE_PATH
|
| 18 |
from src.leaderboard.processor import leaderboard_to_dataframe
|
| 19 |
|
|
@@ -58,19 +58,16 @@ def get_model_entry(model_name: str, mode: str, version="v0") -> Optional[Dict]:
|
|
| 58 |
return None
|
| 59 |
|
| 60 |
|
| 61 |
-
def get_all_entries(version="v0"
|
| 62 |
"""
|
| 63 |
-
Get all
|
| 64 |
"""
|
| 65 |
try:
|
| 66 |
api = HfApi(token=TOKEN)
|
| 67 |
files = api.list_repo_files(repo_id=RESULTS_DATASET_ID, repo_type="dataset")
|
| 68 |
-
if
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
else:
|
| 72 |
-
entry_files = [f for f in files if f.startswith("entries/") and f.endswith(f"_{version}.json")]
|
| 73 |
-
entries = []
|
| 74 |
for entry_file in entry_files:
|
| 75 |
try:
|
| 76 |
entry_path = hf_hub_download(
|
|
@@ -81,12 +78,13 @@ def get_all_entries(version="v0", mode: str = None) -> List[Dict]:
|
|
| 81 |
)
|
| 82 |
with open(entry_path, 'r') as f:
|
| 83 |
entry_data = json.load(f)
|
| 84 |
-
|
| 85 |
except Exception as e:
|
| 86 |
print(f"Error loading entry {entry_file}: {e}")
|
| 87 |
-
|
|
|
|
| 88 |
except Exception as e:
|
| 89 |
-
print(f"Error
|
| 90 |
return []
|
| 91 |
|
| 92 |
|
|
@@ -116,7 +114,7 @@ def get_leaderboard_df(version="v0") -> pd.DataFrame:
|
|
| 116 |
|
| 117 |
def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
|
| 118 |
"""
|
| 119 |
-
Get the leaderboard data filtered by a specific category.
|
| 120 |
"""
|
| 121 |
# Get latest leaderboard data
|
| 122 |
leaderboard_data = get_latest_leaderboard(version)
|
|
@@ -134,90 +132,18 @@ def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
|
|
| 134 |
# Return empty DataFrame if no data available
|
| 135 |
return pd.DataFrame(columns=DISPLAY_COLS)
|
| 136 |
|
| 137 |
-
# Filter entries to only include those with data for the specified
|
| 138 |
filtered_entries = []
|
| 139 |
-
|
| 140 |
for entry in leaderboard_data.get("entries", []):
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
"
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
"version": entry.get("version", version),
|
| 149 |
-
"base_model": entry.get("base_model", ""),
|
| 150 |
-
"revision": entry.get("revision", ""),
|
| 151 |
-
"precision": entry.get("precision", ""),
|
| 152 |
-
"weight_type": entry.get("weight_type", "")
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
if "per_category_metrics" in entry and category in entry["per_category_metrics"]:
|
| 156 |
-
category_metrics = entry["per_category_metrics"][category]
|
| 157 |
-
|
| 158 |
-
# Add all metrics for each test type
|
| 159 |
-
for test_type, metrics in category_metrics.items():
|
| 160 |
-
if isinstance(metrics, dict):
|
| 161 |
-
for metric, value in metrics.items():
|
| 162 |
-
col_name = f"{test_type}_{metric}"
|
| 163 |
-
filtered_entry[col_name] = value
|
| 164 |
-
|
| 165 |
-
# Also add the non-binary version for F1 scores
|
| 166 |
-
if metric == "f1_binary":
|
| 167 |
-
filtered_entry[f"{test_type}_f1"] = value
|
| 168 |
-
|
| 169 |
-
# Calculate averages
|
| 170 |
-
f1_values = []
|
| 171 |
-
recall_values = []
|
| 172 |
-
precision_values = []
|
| 173 |
-
accuracy_values = []
|
| 174 |
-
category_recall_values = []
|
| 175 |
-
total_samples = 0
|
| 176 |
-
|
| 177 |
-
for test_type in ["default_prompts", "jailbreaked_prompts", "default_answers", "jailbreaked_answers"]:
|
| 178 |
-
if test_type in category_metrics and isinstance(category_metrics[test_type], dict):
|
| 179 |
-
test_metrics = category_metrics[test_type]
|
| 180 |
-
if "f1_binary" in test_metrics and pd.notna(test_metrics["f1_binary"]):
|
| 181 |
-
f1_values.append(test_metrics["f1_binary"])
|
| 182 |
-
if "recall_binary" in test_metrics and pd.notna(test_metrics["recall_binary"]):
|
| 183 |
-
recall_values.append(test_metrics["recall_binary"])
|
| 184 |
-
category_recall_values.append(test_metrics["recall_binary"])
|
| 185 |
-
if "precision_binary" in test_metrics and pd.notna(test_metrics["precision_binary"]):
|
| 186 |
-
precision_values.append(test_metrics["precision_binary"])
|
| 187 |
-
if "accuracy" in test_metrics and pd.notna(test_metrics["accuracy"]):
|
| 188 |
-
accuracy_values.append(test_metrics["accuracy"])
|
| 189 |
-
if "sample_count" in test_metrics and pd.notna(test_metrics["sample_count"]):
|
| 190 |
-
total_samples += test_metrics["sample_count"]
|
| 191 |
-
|
| 192 |
-
# print(f"F1 values: {f1_values}")
|
| 193 |
-
# print(f1_values, recall_values, precision_values, accuracy_values, total_samples)
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# Add overall averages
|
| 197 |
-
if f1_values:
|
| 198 |
-
filtered_entry["average_f1"] = sum(f1_values) / len(f1_values)
|
| 199 |
-
if recall_values:
|
| 200 |
-
filtered_entry["average_recall"] = sum(recall_values) / len(recall_values)
|
| 201 |
-
if precision_values:
|
| 202 |
-
filtered_entry["average_precision"] = sum(precision_values) / len(precision_values)
|
| 203 |
-
|
| 204 |
-
# Add category-specific values to standard macro metric keys
|
| 205 |
-
if accuracy_values:
|
| 206 |
-
filtered_entry["macro_accuracy"] = sum(accuracy_values) / len(accuracy_values)
|
| 207 |
else:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
if category_recall_values:
|
| 211 |
-
filtered_entry["macro_recall"] = sum(category_recall_values) / len(category_recall_values)
|
| 212 |
-
else:
|
| 213 |
-
filtered_entry["macro_recall"] = np.nan
|
| 214 |
-
|
| 215 |
-
if total_samples > 0:
|
| 216 |
-
filtered_entry["total_evals_count"] = total_samples
|
| 217 |
-
else:
|
| 218 |
-
filtered_entry["total_evals_count"] = np.nan
|
| 219 |
-
|
| 220 |
-
filtered_entries.append(filtered_entry)
|
| 221 |
|
| 222 |
# Create a new leaderboard data structure with the filtered entries
|
| 223 |
filtered_leaderboard = {
|
|
@@ -225,7 +151,6 @@ def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
|
|
| 225 |
"last_updated": leaderboard_data.get("last_updated", datetime.now().isoformat()),
|
| 226 |
"version": version
|
| 227 |
}
|
| 228 |
-
# print(filtered_leaderboard)
|
| 229 |
|
| 230 |
# Convert to DataFrame
|
| 231 |
return leaderboard_to_dataframe(filtered_leaderboard)
|
|
|
|
| 1 |
"""
|
| 2 |
+
Populate the CodeReview Bench leaderboard from HuggingFace datasets.
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
|
|
|
| 13 |
from huggingface_hub import hf_hub_download, HfApi
|
| 14 |
from datasets import load_dataset
|
| 15 |
|
| 16 |
+
from src.display.utils import CODEREVIEW_COLUMN, DISPLAY_COLS, CATEGORIES
|
| 17 |
from src.envs import RESULTS_DATASET_ID, TOKEN, CACHE_PATH
|
| 18 |
from src.leaderboard.processor import leaderboard_to_dataframe
|
| 19 |
|
|
|
|
| 58 |
return None
|
| 59 |
|
| 60 |
|
| 61 |
+
def get_all_entries(version="v0") -> List[Dict]:
|
| 62 |
"""
|
| 63 |
+
Get all entries from the HuggingFace dataset.
|
| 64 |
"""
|
| 65 |
try:
|
| 66 |
api = HfApi(token=TOKEN)
|
| 67 |
files = api.list_repo_files(repo_id=RESULTS_DATASET_ID, repo_type="dataset")
|
| 68 |
+
entry_files = [f for f in files if f.startswith("entries/") and f.endswith(f"_{version}.json")]
|
| 69 |
+
|
| 70 |
+
all_entries = []
|
|
|
|
|
|
|
|
|
|
| 71 |
for entry_file in entry_files:
|
| 72 |
try:
|
| 73 |
entry_path = hf_hub_download(
|
|
|
|
| 78 |
)
|
| 79 |
with open(entry_path, 'r') as f:
|
| 80 |
entry_data = json.load(f)
|
| 81 |
+
all_entries.append(entry_data)
|
| 82 |
except Exception as e:
|
| 83 |
print(f"Error loading entry {entry_file}: {e}")
|
| 84 |
+
|
| 85 |
+
return all_entries
|
| 86 |
except Exception as e:
|
| 87 |
+
print(f"Error getting all entries: {e}")
|
| 88 |
return []
|
| 89 |
|
| 90 |
|
|
|
|
| 114 |
|
| 115 |
def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
|
| 116 |
"""
|
| 117 |
+
Get the leaderboard data filtered by a specific programming language category.
|
| 118 |
"""
|
| 119 |
# Get latest leaderboard data
|
| 120 |
leaderboard_data = get_latest_leaderboard(version)
|
|
|
|
| 132 |
# Return empty DataFrame if no data available
|
| 133 |
return pd.DataFrame(columns=DISPLAY_COLS)
|
| 134 |
|
| 135 |
+
# Filter entries to only include those with data for the specified programming language
|
| 136 |
filtered_entries = []
|
|
|
|
| 137 |
for entry in leaderboard_data.get("entries", []):
|
| 138 |
+
# Check if entry has data for this programming language
|
| 139 |
+
programming_language = entry.get("programming_language", "").lower()
|
| 140 |
+
if programming_language == category.lower() or category.lower() == "other":
|
| 141 |
+
# For "other" category, include entries that don't match any specific language
|
| 142 |
+
if category.lower() == "other":
|
| 143 |
+
if programming_language not in [cat.lower() for cat in CATEGORIES[:-1]]: # Exclude "Other" from check
|
| 144 |
+
filtered_entries.append(entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
else:
|
| 146 |
+
filtered_entries.append(entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# Create a new leaderboard data structure with the filtered entries
|
| 149 |
filtered_leaderboard = {
|
|
|
|
| 151 |
"last_updated": leaderboard_data.get("last_updated", datetime.now().isoformat()),
|
| 152 |
"version": version
|
| 153 |
}
|
|
|
|
| 154 |
|
| 155 |
# Convert to DataFrame
|
| 156 |
return leaderboard_to_dataframe(filtered_leaderboard)
|
src/submission/submit.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
Handle submissions to the
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
|
@@ -7,20 +7,13 @@ import os
|
|
| 7 |
import tempfile
|
| 8 |
from datetime import datetime
|
| 9 |
from typing import Dict, List, Tuple
|
| 10 |
-
import shutil
|
| 11 |
-
import threading
|
| 12 |
-
import time
|
| 13 |
|
| 14 |
from huggingface_hub import HfApi
|
| 15 |
from datasets import load_dataset
|
| 16 |
-
import subprocess
|
| 17 |
|
| 18 |
from src.display.formatting import styled_error, styled_message
|
| 19 |
from src.envs import RESULTS_DATASET_ID, TOKEN, REPO_ID
|
| 20 |
-
from src.leaderboard.processor import process_jsonl_submission
|
| 21 |
-
from circleguardbench.evaluator import Evaluator
|
| 22 |
-
from circleguardbench.context import GuardbenchContext
|
| 23 |
-
from circleguardbench.models_config import ModelType
|
| 24 |
|
| 25 |
|
| 26 |
def validate_submission(file_path: str) -> Tuple[bool, str]:
|
|
@@ -102,27 +95,9 @@ def submit_leaderboard_to_hub(entries: List[Dict], version="v0") -> Tuple[bool,
|
|
| 102 |
return False, f"Error updating leaderboard: {e}"
|
| 103 |
|
| 104 |
|
| 105 |
-
def restart_space_after_delay(delay_seconds: int = 2) -> None:
|
| 106 |
-
"""
|
| 107 |
-
Restart the Hugging Face Space after a delay.
|
| 108 |
-
"""
|
| 109 |
-
def _restart_space():
|
| 110 |
-
time.sleep(delay_seconds)
|
| 111 |
-
try:
|
| 112 |
-
api = HfApi(token=TOKEN)
|
| 113 |
-
api.restart_space(repo_id=REPO_ID)
|
| 114 |
-
except Exception as e:
|
| 115 |
-
print(f"Error restarting space: {e}")
|
| 116 |
-
|
| 117 |
-
# Start the restart in a separate thread
|
| 118 |
-
thread = threading.Thread(target=_restart_space)
|
| 119 |
-
thread.daemon = True
|
| 120 |
-
thread.start()
|
| 121 |
-
|
| 122 |
-
|
| 123 |
def process_submission(file_path: str, metadata: Dict, version="v0") -> str:
|
| 124 |
"""
|
| 125 |
-
Process a submission to the
|
| 126 |
"""
|
| 127 |
try:
|
| 128 |
# Validate submission
|
|
@@ -130,18 +105,15 @@ def process_submission(file_path: str, metadata: Dict, version="v0") -> str:
|
|
| 130 |
if not is_valid:
|
| 131 |
return styled_error(validation_message)
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
|
| 138 |
-
#
|
| 139 |
model_name = metadata.get("model_name", "unknown")
|
| 140 |
model_name_safe = model_name.replace("/", "_").replace(" ", "_")
|
| 141 |
-
|
| 142 |
-
target_file = os.path.join(results_dir + "/circleguardbench_public", f"{model_name_safe}.jsonl")
|
| 143 |
-
|
| 144 |
-
# Upload raw submission file
|
| 145 |
api = HfApi(token=TOKEN)
|
| 146 |
submission_path = f"submissions_{version}/{model_name_safe}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl"
|
| 147 |
api.upload_file(
|
|
@@ -151,51 +123,15 @@ def process_submission(file_path: str, metadata: Dict, version="v0") -> str:
|
|
| 151 |
repo_type="dataset",
|
| 152 |
commit_message=f"Add raw submission for {model_name}"
|
| 153 |
)
|
| 154 |
-
os.makedirs(results_dir + "/circleguardbench_public", exist_ok=True)
|
| 155 |
-
|
| 156 |
-
# (f"Submission path: {submission_path}")
|
| 157 |
-
# print(f"Target file: {target_file}")
|
| 158 |
-
# printprint(f"Results dir: {results_dir}")
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
shutil.copy2(file_path, target_file)
|
| 162 |
-
# print(f"Copied file to target file: {target_file}")
|
| 163 |
-
# print(f" ls /home/user/app/guard-bench-submodule/results/guardbench_dataset_1k_public/: {subprocess.check_output('ls /home/user/app/guard-bench-submodule/results/guardbench_dataset_1k_public/', shell=True).decode('utf-8')}")
|
| 164 |
-
|
| 165 |
-
try:
|
| 166 |
-
# Initialize GuardBench context
|
| 167 |
-
ctx = GuardbenchContext()
|
| 168 |
-
# Set results directory
|
| 169 |
-
ctx.results_dir = results_dir
|
| 170 |
-
# Set bench name from the results directory
|
| 171 |
-
ctx.bench_name = "circleguardbench_public"
|
| 172 |
-
# Load dataset
|
| 173 |
-
ctx.load_dataset("whitecircle-ai/circleguardbench_public")
|
| 174 |
-
# Mark as initialized
|
| 175 |
-
ctx.is_initialized = True
|
| 176 |
-
|
| 177 |
-
evaluator = Evaluator(ctx, force=True, using_cached=True)
|
| 178 |
-
|
| 179 |
-
# Run evaluation and get entry
|
| 180 |
-
evaluator.evaluate_model(model_name_safe, str(guard_model_type).lower())
|
| 181 |
-
|
| 182 |
-
# Get the entry from results
|
| 183 |
-
with open(os.path.join(results_dir + "/" + ctx.bench_name, "leaderboard.json"), 'r') as f:
|
| 184 |
-
results_data = json.load(f)
|
| 185 |
-
model_entry = next(
|
| 186 |
-
(entry for entry in results_data.get("entries", [])
|
| 187 |
-
if entry.get("model_name") == model_name_safe),
|
| 188 |
-
None
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
if not model_entry:
|
| 192 |
-
return styled_error("No evaluation results found")
|
| 193 |
|
|
|
|
|
|
|
|
|
|
| 194 |
# Add metadata to entry
|
| 195 |
-
|
| 196 |
-
"model_name": metadata.get("model_name"),
|
| 197 |
"model_type": metadata.get("model_type"),
|
| 198 |
-
"
|
| 199 |
"mode": metadata.get("mode"),
|
| 200 |
"base_model": metadata.get("base_model"),
|
| 201 |
"revision": metadata.get("revision"),
|
|
@@ -204,51 +140,45 @@ def process_submission(file_path: str, metadata: Dict, version="v0") -> str:
|
|
| 204 |
"version": version,
|
| 205 |
"submission_date": datetime.now().isoformat()
|
| 206 |
})
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
|
|
|
| 210 |
if not success:
|
| 211 |
return styled_error(message)
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
print(f"Error loading entry {entry_file}: {e}")
|
| 231 |
-
|
| 232 |
-
# Update leaderboard with all entries
|
| 233 |
-
success, message = submit_leaderboard_to_hub(all_entries, version)
|
| 234 |
-
if not success:
|
| 235 |
-
return styled_error(message)
|
| 236 |
-
|
| 237 |
-
restart_space_after_delay(5)
|
| 238 |
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
return styled_error(f"Error during evaluation: {eval_error}")
|
| 243 |
|
| 244 |
except Exception as e:
|
| 245 |
return styled_error(f"Error processing submission: {e}")
|
| 246 |
finally:
|
| 247 |
-
# Clean up temporary files
|
| 248 |
try:
|
| 249 |
if os.path.exists(file_path):
|
| 250 |
os.remove(file_path)
|
| 251 |
-
if os.path.exists(target_file):
|
| 252 |
-
os.remove(target_file)
|
| 253 |
except:
|
| 254 |
pass
|
|
|
|
| 1 |
"""
|
| 2 |
+
Handle submissions to the CodeReview Bench leaderboard.
|
| 3 |
"""
|
| 4 |
|
| 5 |
import json
|
|
|
|
| 7 |
import tempfile
|
| 8 |
from datetime import datetime
|
| 9 |
from typing import Dict, List, Tuple
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from huggingface_hub import HfApi
|
| 12 |
from datasets import load_dataset
|
|
|
|
| 13 |
|
| 14 |
from src.display.formatting import styled_error, styled_message
|
| 15 |
from src.envs import RESULTS_DATASET_ID, TOKEN, REPO_ID
|
| 16 |
+
from src.leaderboard.processor import process_jsonl_submission, add_entries_to_leaderboard
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def validate_submission(file_path: str) -> Tuple[bool, str]:
|
|
|
|
| 95 |
return False, f"Error updating leaderboard: {e}"
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def process_submission(file_path: str, metadata: Dict, version="v0") -> str:
|
| 99 |
"""
|
| 100 |
+
Process a submission to the CodeReview Bench leaderboard.
|
| 101 |
"""
|
| 102 |
try:
|
| 103 |
# Validate submission
|
|
|
|
| 105 |
if not is_valid:
|
| 106 |
return styled_error(validation_message)
|
| 107 |
|
| 108 |
+
# Process the submission entries
|
| 109 |
+
entries, message = process_jsonl_submission(file_path)
|
| 110 |
+
if not entries:
|
| 111 |
+
return styled_error(f"Failed to process submission: {message}")
|
| 112 |
|
| 113 |
+
# Upload raw submission file
|
| 114 |
model_name = metadata.get("model_name", "unknown")
|
| 115 |
model_name_safe = model_name.replace("/", "_").replace(" ", "_")
|
| 116 |
+
|
|
|
|
|
|
|
|
|
|
| 117 |
api = HfApi(token=TOKEN)
|
| 118 |
submission_path = f"submissions_{version}/{model_name_safe}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl"
|
| 119 |
api.upload_file(
|
|
|
|
| 123 |
repo_type="dataset",
|
| 124 |
commit_message=f"Add raw submission for {model_name}"
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
# Process entries and add metadata
|
| 128 |
+
processed_entries = []
|
| 129 |
+
for entry in entries:
|
| 130 |
# Add metadata to entry
|
| 131 |
+
entry.update({
|
| 132 |
+
"model_name": metadata.get("model_name"),
|
| 133 |
"model_type": metadata.get("model_type"),
|
| 134 |
+
"review_model_type": str(metadata.get("review_model_type", "custom")).lower(),
|
| 135 |
"mode": metadata.get("mode"),
|
| 136 |
"base_model": metadata.get("base_model"),
|
| 137 |
"revision": metadata.get("revision"),
|
|
|
|
| 140 |
"version": version,
|
| 141 |
"submission_date": datetime.now().isoformat()
|
| 142 |
})
|
| 143 |
+
processed_entries.append(entry)
|
| 144 |
|
| 145 |
+
# Submit entries to entries folder
|
| 146 |
+
for entry in processed_entries:
|
| 147 |
+
success, message = submit_entry_to_hub(entry, model_name, metadata.get("mode"), version)
|
| 148 |
if not success:
|
| 149 |
return styled_error(message)
|
| 150 |
|
| 151 |
+
# Get all entries from HF dataset and update leaderboard
|
| 152 |
+
files = api.list_repo_files(repo_id=RESULTS_DATASET_ID, repo_type="dataset")
|
| 153 |
+
entry_files = [f for f in files if f.startswith("entries/") and f.endswith(f"_{version}.json")]
|
| 154 |
+
|
| 155 |
+
all_entries = []
|
| 156 |
+
for entry_file in entry_files:
|
| 157 |
+
try:
|
| 158 |
+
entry_path = api.hf_hub_download(
|
| 159 |
+
repo_id=RESULTS_DATASET_ID,
|
| 160 |
+
filename=entry_file,
|
| 161 |
+
repo_type="dataset",
|
| 162 |
+
)
|
| 163 |
+
with open(entry_path, 'r') as f:
|
| 164 |
+
entry_data = json.load(f)
|
| 165 |
+
all_entries.append(entry_data)
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Error loading entry {entry_file}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
# Update leaderboard with all entries
|
| 170 |
+
success, message = submit_leaderboard_to_hub(all_entries, version)
|
| 171 |
+
if not success:
|
| 172 |
+
return styled_error(message)
|
| 173 |
|
| 174 |
+
return styled_message("Submission successful! Model evaluated and leaderboard updated.")
|
|
|
|
| 175 |
|
| 176 |
except Exception as e:
|
| 177 |
return styled_error(f"Error processing submission: {e}")
|
| 178 |
finally:
|
| 179 |
+
# Clean up temporary files if they exist
|
| 180 |
try:
|
| 181 |
if os.path.exists(file_path):
|
| 182 |
os.remove(file_path)
|
|
|
|
|
|
|
| 183 |
except:
|
| 184 |
pass
|