Spaces:
Runtime error
Runtime error
Commit
·
10f3130
1
Parent(s):
307beef
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import gradio as gr
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from ultralyticsplus import YOLO, render_result, postprocess_classify_output
|
| 6 |
|
| 7 |
-
from utils import load_models_from_txt_files
|
| 8 |
|
| 9 |
EXAMPLE_IMAGE_DIR = 'example_images'
|
| 10 |
|
|
@@ -17,6 +17,7 @@ DEFAULT_CLS_DATASET_ID = 'keremberke/chest-xray-classification'
|
|
| 17 |
|
| 18 |
# load model ids and default models
|
| 19 |
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
|
|
|
|
| 20 |
det_model = YOLO(DEFAULT_DET_MODEL_ID)
|
| 21 |
det_model_id = DEFAULT_DET_MODEL_ID
|
| 22 |
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
|
|
@@ -25,22 +26,25 @@ cls_model = YOLO(DEFAULT_CLS_MODEL_ID)
|
|
| 25 |
cls_model_id = DEFAULT_CLS_MODEL_ID
|
| 26 |
|
| 27 |
|
| 28 |
-
def get_examples(
|
| 29 |
examples = []
|
| 30 |
-
ds = load_dataset(dataset_id, name="mini")["validation"]
|
| 31 |
Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
|
| 32 |
-
for
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
return examples
|
| 39 |
|
|
|
|
| 40 |
# load default examples using default datasets
|
| 41 |
-
det_examples = get_examples(
|
| 42 |
-
seg_examples = get_examples(
|
| 43 |
-
cls_examples = get_examples(
|
| 44 |
|
| 45 |
|
| 46 |
def predict(image, model_id, threshold):
|
|
@@ -120,12 +124,12 @@ with gr.Blocks() as demo:
|
|
| 120 |
with gr.Column():
|
| 121 |
detect_output = gr.Image(label="Predictions:", interactive=False)
|
| 122 |
with gr.Row():
|
| 123 |
-
gr.Examples(
|
| 124 |
det_examples,
|
| 125 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
| 126 |
outputs=detect_output,
|
| 127 |
fn=predict,
|
| 128 |
-
cache_examples=
|
| 129 |
)
|
| 130 |
with gr.Tab("Segmentation"):
|
| 131 |
with gr.Row():
|
|
@@ -137,7 +141,7 @@ with gr.Blocks() as demo:
|
|
| 137 |
with gr.Column():
|
| 138 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
| 139 |
with gr.Row():
|
| 140 |
-
gr.Examples(
|
| 141 |
seg_examples,
|
| 142 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
| 143 |
outputs=segment_output,
|
|
@@ -156,7 +160,7 @@ with gr.Blocks() as demo:
|
|
| 156 |
label="Predictions:", show_label=True, num_top_classes=5
|
| 157 |
)
|
| 158 |
with gr.Row():
|
| 159 |
-
gr.Examples(
|
| 160 |
cls_examples,
|
| 161 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
| 162 |
outputs=classify_output,
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from ultralyticsplus import YOLO, render_result, postprocess_classify_output
|
| 6 |
|
| 7 |
+
from utils import load_models_from_txt_files, get_dataset_id_from_model_id, get_task_from_readme
|
| 8 |
|
| 9 |
EXAMPLE_IMAGE_DIR = 'example_images'
|
| 10 |
|
|
|
|
| 17 |
|
| 18 |
# load model ids and default models
|
| 19 |
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
|
| 20 |
+
task_to_model_ids = {'detect': det_model_ids, 'segment': seg_model_ids, 'classify': cls_model_ids}
|
| 21 |
det_model = YOLO(DEFAULT_DET_MODEL_ID)
|
| 22 |
det_model_id = DEFAULT_DET_MODEL_ID
|
| 23 |
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
|
|
|
|
| 26 |
cls_model_id = DEFAULT_CLS_MODEL_ID
|
| 27 |
|
| 28 |
|
| 29 |
+
def get_examples(task):
|
| 30 |
examples = []
|
|
|
|
| 31 |
Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
|
| 32 |
+
for model_id in task_to_model_ids[task]:
|
| 33 |
+
dataset_id = get_dataset_id_from_model_id(model_id)
|
| 34 |
+
ds = load_dataset(dataset_id, name="mini")["validation"]
|
| 35 |
+
for ind in range(min(2, len(ds))):
|
| 36 |
+
jpeg_image_file = ds[ind]["image"]
|
| 37 |
+
image_file_path = str(Path(EXAMPLE_IMAGE_DIR) / f"{task}_example_{ind}.jpg")
|
| 38 |
+
jpeg_image_file.save(image_file_path, format='JPEG', quality=100)
|
| 39 |
+
image_path = os.path.abspath(image_file_path)
|
| 40 |
+
examples.append([image_path, model_id, 0.25])
|
| 41 |
return examples
|
| 42 |
|
| 43 |
+
|
| 44 |
# load default examples using default datasets
|
| 45 |
+
det_examples = get_examples('detect')
|
| 46 |
+
seg_examples = get_examples('segment')
|
| 47 |
+
cls_examples = get_examples('classify')
|
| 48 |
|
| 49 |
|
| 50 |
def predict(image, model_id, threshold):
|
|
|
|
| 124 |
with gr.Column():
|
| 125 |
detect_output = gr.Image(label="Predictions:", interactive=False)
|
| 126 |
with gr.Row():
|
| 127 |
+
detect_examples = gr.Examples(
|
| 128 |
det_examples,
|
| 129 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
| 130 |
outputs=detect_output,
|
| 131 |
fn=predict,
|
| 132 |
+
cache_examples=False,
|
| 133 |
)
|
| 134 |
with gr.Tab("Segmentation"):
|
| 135 |
with gr.Row():
|
|
|
|
| 141 |
with gr.Column():
|
| 142 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
| 143 |
with gr.Row():
|
| 144 |
+
segment_examples = gr.Examples(
|
| 145 |
seg_examples,
|
| 146 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
| 147 |
outputs=segment_output,
|
|
|
|
| 160 |
label="Predictions:", show_label=True, num_top_classes=5
|
| 161 |
)
|
| 162 |
with gr.Row():
|
| 163 |
+
classify_examples = gr.Examples(
|
| 164 |
cls_examples,
|
| 165 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
| 166 |
outputs=classify_output,
|
utils.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
DET_MODELS_FILENAME = 'det_models.txt'
|
| 2 |
SEG_MODELS_FILENAME = 'seg_models.txt'
|
| 3 |
CLS_MODELS_FILENAME = 'cls_models.txt'
|
|
@@ -11,4 +15,62 @@ def load_models_from_txt_files():
|
|
| 11 |
seg_models = [line.strip() for line in file]
|
| 12 |
with open(CLS_MODELS_FILENAME, 'r') as file:
|
| 13 |
cls_models = [line.strip() for line in file]
|
| 14 |
-
return det_models, seg_models, cls_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
|
| 5 |
DET_MODELS_FILENAME = 'det_models.txt'
|
| 6 |
SEG_MODELS_FILENAME = 'seg_models.txt'
|
| 7 |
CLS_MODELS_FILENAME = 'cls_models.txt'
|
|
|
|
| 15 |
seg_models = [line.strip() for line in file]
|
| 16 |
with open(CLS_MODELS_FILENAME, 'r') as file:
|
| 17 |
cls_models = [line.strip() for line in file]
|
| 18 |
+
return det_models, seg_models, cls_models
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_dataset_id_from_model_id(model_id):
|
| 22 |
+
"""
|
| 23 |
+
Gets the dataset ID from the README file for a given Hugging Face model ID.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
model_id (str): The Hugging Face model ID.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
The dataset ID as a string, or None if the dataset ID cannot be found.
|
| 30 |
+
"""
|
| 31 |
+
# Define the URL of the README file for the model
|
| 32 |
+
readme_url = f"https://huggingface.co/{model_id}/raw/main/README.md"
|
| 33 |
+
|
| 34 |
+
# Make a GET request to the README URL and get the contents
|
| 35 |
+
response = requests.get(readme_url)
|
| 36 |
+
readme_contents = response.text
|
| 37 |
+
|
| 38 |
+
# Use regular expressions to search for the dataset ID in the README file
|
| 39 |
+
match = re.search(r"datasets:\s*\n- (\S+)", readme_contents)
|
| 40 |
+
|
| 41 |
+
# If a match is found, extract the dataset ID and return it. Otherwise, return None.
|
| 42 |
+
if match is not None:
|
| 43 |
+
dataset_id = match.group(1)
|
| 44 |
+
return dataset_id
|
| 45 |
+
else:
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_task_from_readme(model_id):
|
| 50 |
+
"""
|
| 51 |
+
Gets the task from the README file for a given Hugging Face model ID.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
model_id (str): The Hugging Face model ID.
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
The task as a string ("detect", "segment", or "classify"), or None if the task cannot be found.
|
| 58 |
+
"""
|
| 59 |
+
# Define the URL of the README file for the model
|
| 60 |
+
readme_url = f"https://huggingface.co/{model_id}/raw/main/README.md"
|
| 61 |
+
|
| 62 |
+
# Make a GET request to the README URL and get the contents
|
| 63 |
+
response = requests.get(readme_url)
|
| 64 |
+
readme_contents = response.text
|
| 65 |
+
|
| 66 |
+
# Use regular expressions to search for the task in the tags section of the README file
|
| 67 |
+
if re.search(r"tags:", readme_contents):
|
| 68 |
+
if re.search(r"object-detection", readme_contents):
|
| 69 |
+
return "detect"
|
| 70 |
+
elif re.search(r"image-segmentation", readme_contents):
|
| 71 |
+
return "segment"
|
| 72 |
+
elif re.search(r"image-classification", readme_contents):
|
| 73 |
+
return "classify"
|
| 74 |
+
|
| 75 |
+
# If the task cannot be found, return None
|
| 76 |
+
return None
|