Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +257 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,259 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import jieba
|
| 5 |
+
import requests
|
| 6 |
+
import time
|
| 7 |
+
import os
|
| 8 |
+
from openai import OpenAI
|
| 9 |
+
from rank_bm25 import BM25Okapi
|
| 10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 11 |
+
|
| 12 |
+
# ================= 1. 安全配置与初始化 =================
|
| 13 |
+
|
| 14 |
+
# 尝试从环境变量获取 Key (Docker/HF Space 标准做法)
|
| 15 |
+
API_KEY = os.getenv("SILICONFLOW_API_KEY")
|
| 16 |
+
|
| 17 |
+
# 页面基础设置
|
| 18 |
+
st.set_page_config(
|
| 19 |
+
page_title="COMSOL Dark Expert",
|
| 20 |
+
page_icon="🌌",
|
| 21 |
+
layout="wide",
|
| 22 |
+
initial_sidebar_state="collapsed"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# 安全检查:如果没有配置 Key,拦截运行,避免公开应用报错泄露信息
|
| 26 |
+
if not API_KEY:
|
| 27 |
+
st.error("⚠️ 未检测到 API Key。")
|
| 28 |
+
st.info("请在 Hugging Face Space 的 'Settings' -> 'Variables and secrets' 中添加名为 `SILICONFLOW_API_KEY` 的 Secret。")
|
| 29 |
+
st.stop()
|
| 30 |
+
|
| 31 |
+
# API 配置
|
| 32 |
+
API_BASE = "https://api.siliconflow.cn/v1"
|
| 33 |
+
EMBEDDING_MODEL = "Qwen/Qwen3-Embedding-4B"
|
| 34 |
+
RERANK_MODEL = "Qwen/Qwen3-Reranker-4B"
|
| 35 |
+
GEN_MODEL_NAME = "MiniMaxAI/MiniMax-M2"
|
| 36 |
+
|
| 37 |
+
# 数据源配置
|
| 38 |
+
DATA_URL = "https://share.leezhu.cn/graduation_design_data/comsol_embedded.parquet"
|
| 39 |
+
LOCAL_DATA_PATH = "/app/comsol_embedded.parquet" # Docker 容器内的路径,或者直接用 "comsol_embedded.parquet"
|
| 40 |
+
|
| 41 |
+
# ================= 2. 资源加载函数 (缓存化) =================
|
| 42 |
+
|
| 43 |
+
@st.cache_resource
|
| 44 |
+
def load_data_and_engine():
|
| 45 |
+
"""下载数据并初始化检索引擎,全局只运行一次"""
|
| 46 |
+
|
| 47 |
+
# 1. 自动下载数据
|
| 48 |
+
if not os.path.exists(LOCAL_DATA_PATH):
|
| 49 |
+
try:
|
| 50 |
+
print(f"正在从 {DATA_URL} 下载数据...")
|
| 51 |
+
headers = {'User-Agent': 'Mozilla/5.0'} # 防止被简单的反爬拦截
|
| 52 |
+
r = requests.get(DATA_URL, headers=headers, stream=True)
|
| 53 |
+
r.raise_for_status()
|
| 54 |
+
with open(LOCAL_DATA_PATH, 'wb') as f:
|
| 55 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 56 |
+
f.write(chunk)
|
| 57 |
+
print("✅ 数据下载完成")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
st.error(f"❌ 数据文件下载失败: {str(e)}")
|
| 60 |
+
st.stop()
|
| 61 |
+
|
| 62 |
+
# 2. 初始化引擎
|
| 63 |
+
return FullRetriever(LOCAL_DATA_PATH)
|
| 64 |
+
|
| 65 |
+
# ================= 3. 核心后端类 =================
|
| 66 |
+
|
| 67 |
+
class RerankClient:
|
| 68 |
+
def __init__(self, api_base, api_key, model):
|
| 69 |
+
self.api_url = f"{api_base}/rerank"
|
| 70 |
+
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
| 71 |
+
self.model = model
|
| 72 |
+
|
| 73 |
+
def rerank(self, query: str, documents: list, top_n: int = 5):
|
| 74 |
+
if not documents: return []
|
| 75 |
+
payload = {"model": self.model, "query": query, "documents": documents, "top_n": top_n}
|
| 76 |
+
try:
|
| 77 |
+
response = requests.post(self.api_url, headers=self.headers, json=payload, timeout=30)
|
| 78 |
+
response.raise_for_status()
|
| 79 |
+
return response.json()['results']
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Rerank Warning: {e}")
|
| 82 |
+
# 降级处理:如果不通,按原顺序返回
|
| 83 |
+
return [{"index": i, "relevance_score": 0.0} for i in range(len(documents))]
|
| 84 |
+
|
| 85 |
+
class FullRetriever:
|
| 86 |
+
def __init__(self, parquet_path):
|
| 87 |
+
try:
|
| 88 |
+
self.df = pd.read_parquet(parquet_path)
|
| 89 |
+
except Exception as e:
|
| 90 |
+
raise RuntimeError(f"Parquet 读取失败: {e}")
|
| 91 |
+
|
| 92 |
+
self.documents = self.df['content'].tolist()
|
| 93 |
+
# 确保 embedding 列是 numpy 数组
|
| 94 |
+
self.embeddings = np.stack(self.df['embedding'].values)
|
| 95 |
+
self.bm25 = BM25Okapi([jieba.lcut(str(d).lower()) for d in self.documents])
|
| 96 |
+
self.client = OpenAI(base_url=API_BASE, api_key=API_KEY)
|
| 97 |
+
self.reranker = RerankClient(API_BASE, API_KEY, RERANK_MODEL)
|
| 98 |
+
|
| 99 |
+
def _get_emb(self, q):
|
| 100 |
+
try:
|
| 101 |
+
resp = self.client.embeddings.create(model=EMBEDDING_MODEL, input=[q])
|
| 102 |
+
return resp.data[0].embedding
|
| 103 |
+
except Exception:
|
| 104 |
+
return [0.0] * 1024 # 防止 API 挂掉时整个应用崩溃
|
| 105 |
+
|
| 106 |
+
def hybrid_search(self, query: str, top_k=5):
|
| 107 |
+
# 1. 向量检索
|
| 108 |
+
query_emb = self._get_emb(query)
|
| 109 |
+
vec_scores = cosine_similarity([query_emb], self.embeddings)[0]
|
| 110 |
+
vec_idx = np.argsort(vec_scores)[-100:][::-1]
|
| 111 |
+
|
| 112 |
+
# 2. 关键词检索
|
| 113 |
+
kw_idx = np.argsort(self.bm25.get_scores(jieba.lcut(query.lower())))[-100:][::-1]
|
| 114 |
+
|
| 115 |
+
# 3. RRF 融合
|
| 116 |
+
fused = {}
|
| 117 |
+
for r, i in enumerate(vec_idx): fused[i] = fused.get(i, 0) + 1/(60+r+1)
|
| 118 |
+
for r, i in enumerate(kw_idx): fused[i] = fused.get(i, 0) + 1/(60+r+1)
|
| 119 |
+
|
| 120 |
+
c_idxs = [x[0] for x in sorted(fused.items(), key=lambda x:x[1], reverse=True)[:50]]
|
| 121 |
+
c_docs = [self.documents[i] for i in c_idxs]
|
| 122 |
+
|
| 123 |
+
# 4. 重排序
|
| 124 |
+
results = self.reranker.rerank(query, c_docs, top_n=top_k)
|
| 125 |
+
|
| 126 |
+
final_res = []
|
| 127 |
+
context = ""
|
| 128 |
+
for i, item in enumerate(results):
|
| 129 |
+
orig_idx = c_idxs[item['index']]
|
| 130 |
+
row = self.df.iloc[orig_idx]
|
| 131 |
+
final_res.append({
|
| 132 |
+
"rank": i+1,
|
| 133 |
+
"score": item['relevance_score'],
|
| 134 |
+
"filename": row['filename'],
|
| 135 |
+
"content": row['content']
|
| 136 |
+
})
|
| 137 |
+
context += f"[文档{i+1}]: {row['content']}\n\n"
|
| 138 |
+
return final_res, context
|
| 139 |
+
|
| 140 |
+
# ================= 4. UI 渲染 =================
|
| 141 |
+
|
| 142 |
+
# CSS 样式注入
|
| 143 |
+
st.markdown("""
|
| 144 |
+
<style>
|
| 145 |
+
.stApp { background-color: #0E1117; color: #E0E0E0; }
|
| 146 |
+
.main-header {
|
| 147 |
+
background: linear-gradient(90deg, #0f2027 0%, #203a43 50%, #2c5364 100%);
|
| 148 |
+
padding: 1.5rem; border-radius: 0 0 15px 15px; color: #fff;
|
| 149 |
+
margin-bottom: 2rem; display: flex; align-items: center; justify-content: space-between;
|
| 150 |
+
}
|
| 151 |
+
.header-title { font-size: 1.8rem; font-weight: 700; color: white; margin:0;}
|
| 152 |
+
[data-testid="stChatMessage"] { background-color: #1E1E1E; border: 1px solid #333; }
|
| 153 |
+
.ref-card {
|
| 154 |
+
background-color: #161B22; border: 1px solid #30363D;
|
| 155 |
+
border-left: 4px solid #29B5E8; padding: 12px; margin-bottom: 12px;
|
| 156 |
+
}
|
| 157 |
+
.ref-title { font-weight: 600; color: #58A6FF; font-size: 0.95rem; }
|
| 158 |
+
.ref-snippet { font-size: 0.85rem; color: #8B949E; margin-top: 5px; font-family: monospace;}
|
| 159 |
+
</style>
|
| 160 |
+
""", unsafe_allow_html=True)
|
| 161 |
+
|
| 162 |
+
def main():
|
| 163 |
+
# 顶部栏
|
| 164 |
+
st.markdown("""
|
| 165 |
+
<div class="main-header">
|
| 166 |
+
<div>
|
| 167 |
+
<div class="header-title">COMSOL 智能仿真专家</div>
|
| 168 |
+
<div style="color: #bbb; font-size: 0.8rem;">V3.0 Dark | Secured Docker Edition</div>
|
| 169 |
+
</div>
|
| 170 |
+
</div>
|
| 171 |
+
""", unsafe_allow_html=True)
|
| 172 |
+
|
| 173 |
+
# 加载引擎 (包含下载逻辑)
|
| 174 |
+
with st.spinner("🚀 正在从云端同步数据并初始化神经中枢..."):
|
| 175 |
+
retriever = load_data_and_engine()
|
| 176 |
+
|
| 177 |
+
# 侧边栏
|
| 178 |
+
with st.sidebar:
|
| 179 |
+
st.header("🛠️ 参数控制")
|
| 180 |
+
top_k = st.slider("检索深度", 1, 10, 4)
|
| 181 |
+
temp = st.slider("发散度", 0.0, 1.0, 0.3)
|
| 182 |
+
if st.button("🧹 清空会话"):
|
| 183 |
+
st.session_state.messages = []
|
| 184 |
+
st.session_state.current_refs = []
|
| 185 |
+
st.rerun()
|
| 186 |
+
|
| 187 |
+
# 状态初始化
|
| 188 |
+
if "messages" not in st.session_state: st.session_state.messages = []
|
| 189 |
+
if "current_refs" not in st.session_state: st.session_state.current_refs = []
|
| 190 |
+
|
| 191 |
+
# 布局
|
| 192 |
+
col_chat, col_evidence = st.columns([0.65, 0.35], gap="large")
|
| 193 |
+
|
| 194 |
+
with col_chat:
|
| 195 |
+
for msg in st.session_state.messages:
|
| 196 |
+
with st.chat_message(msg["role"]):
|
| 197 |
+
st.markdown(msg["content"])
|
| 198 |
+
|
| 199 |
+
if prompt := st.chat_input("COMSOL 问题咨询..."):
|
| 200 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 201 |
+
with st.chat_message("user"): st.markdown(prompt)
|
| 202 |
+
|
| 203 |
+
# 检索阶段
|
| 204 |
+
with st.status("📡 正在检索知识库...", expanded=False):
|
| 205 |
+
refs, context = retriever.hybrid_search(prompt, top_k=top_k)
|
| 206 |
+
st.session_state.current_refs = refs
|
| 207 |
+
|
| 208 |
+
# 生成阶段
|
| 209 |
+
system_prompt = f"""你是一个COMSOL专家。请根据以下参考文档回答问题。如果文档无相关信息,请明确告知。
|
| 210 |
+
|
| 211 |
+
参考文档:
|
| 212 |
+
{context}
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
with st.chat_message("assistant"):
|
| 216 |
+
resp_cont = st.empty()
|
| 217 |
+
full_resp = ""
|
| 218 |
+
|
| 219 |
+
# 创建新的 Client 实例 (使用全局 API_KEY)
|
| 220 |
+
client = OpenAI(base_url=API_BASE, api_key=API_KEY)
|
| 221 |
+
|
| 222 |
+
try:
|
| 223 |
+
stream = client.chat.completions.create(
|
| 224 |
+
model=GEN_MODEL_NAME,
|
| 225 |
+
messages=[
|
| 226 |
+
{"role": "system", "content": system_prompt},
|
| 227 |
+
*st.session_state.messages[-6:] # 携带最近历史
|
| 228 |
+
],
|
| 229 |
+
temperature=temp,
|
| 230 |
+
stream=True
|
| 231 |
+
)
|
| 232 |
+
for chunk in stream:
|
| 233 |
+
txt = chunk.choices[0].delta.content
|
| 234 |
+
if txt:
|
| 235 |
+
full_resp += txt
|
| 236 |
+
resp_cont.markdown(full_resp + "▌")
|
| 237 |
+
resp_cont.markdown(full_resp)
|
| 238 |
+
st.session_state.messages.append({"role": "assistant", "content": full_resp})
|
| 239 |
+
st.rerun() # 强制刷新以更新右侧证据
|
| 240 |
+
except Exception as e:
|
| 241 |
+
st.error(f"生成中断: {e}")
|
| 242 |
+
|
| 243 |
+
with col_evidence:
|
| 244 |
+
st.caption("📚 检索到的证据")
|
| 245 |
+
if st.session_state.current_refs:
|
| 246 |
+
for ref in st.session_state.current_refs:
|
| 247 |
+
st.markdown(f"""
|
| 248 |
+
<div class="ref-card">
|
| 249 |
+
<div class="ref-title">📄 {ref['filename']} (Score: {ref['score']:.2f})</div>
|
| 250 |
+
<div class="ref-snippet">{ref['content'][:120]}...</div>
|
| 251 |
+
</div>
|
| 252 |
+
""", unsafe_allow_html=True)
|
| 253 |
+
with st.expander("展开全文"):
|
| 254 |
+
st.text(ref['content'])
|
| 255 |
+
else:
|
| 256 |
+
st.info("暂无检索数据")
|
| 257 |
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|