Spaces:
Runtime error
Runtime error
Delete mplug_docowl/model/convert_mplug_docowl_weight_to_hf.py
Browse files
mplug_docowl/model/convert_mplug_docowl_weight_to_hf.py
DELETED
|
@@ -1,319 +0,0 @@
|
|
| 1 |
-
# Copyright 2023 DAMO Academy and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
import argparse
|
| 15 |
-
import gc
|
| 16 |
-
import json
|
| 17 |
-
import math
|
| 18 |
-
import os
|
| 19 |
-
import shutil
|
| 20 |
-
import warnings
|
| 21 |
-
|
| 22 |
-
import torch
|
| 23 |
-
|
| 24 |
-
from transformers import LlamaTokenizer
|
| 25 |
-
from .configuration_mplug_docowl import MPLUGDocOwlConfig
|
| 26 |
-
from icecream import ic
|
| 27 |
-
|
| 28 |
-
try:
|
| 29 |
-
from transformers import LlamaTokenizerFast
|
| 30 |
-
except ImportError as e:
|
| 31 |
-
warnings.warn(e)
|
| 32 |
-
warnings.warn(
|
| 33 |
-
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
| 34 |
-
)
|
| 35 |
-
LlamaTokenizerFast = None
|
| 36 |
-
|
| 37 |
-
"""
|
| 38 |
-
Sample usage:
|
| 39 |
-
|
| 40 |
-
```
|
| 41 |
-
python3 /pure-mlo-scratch/sfan/model-parallel-trainer/llama2megatron/convert_llama2hf.py \
|
| 42 |
-
--input_dir /pure-mlo-scratch/llama/ --model_size 7 --output_dir /pure-mlo-scratch/llama/converted_HF_7B
|
| 43 |
-
```
|
| 44 |
-
|
| 45 |
-
Thereafter, models can be loaded via:
|
| 46 |
-
|
| 47 |
-
```py
|
| 48 |
-
from transformers import LlamaForCausalLM, LlamaTokenizer
|
| 49 |
-
|
| 50 |
-
model = LlamaForCausalLM.from_pretrained("/output/path")
|
| 51 |
-
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
| 52 |
-
```
|
| 53 |
-
|
| 54 |
-
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
| 55 |
-
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
llama_s2layer = {7: 32, 13: 40, 30: 60, 65: 80, 70: 80}
|
| 59 |
-
llama_s2heads = {7: 32, 13: 40, 30: 52, 65: 64, 70: 64}
|
| 60 |
-
llama_s2dense = {7: 11008, 13: 13824, 30: 17920, 65: 22016,
|
| 61 |
-
70: 28672} # should be (2/3)*4*d, but it isn't exaclty that
|
| 62 |
-
llama_s2hidden = {7: 4096, 13: 5120, 32: 6656, 65: 8192, 70: 8192}
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def compute_intermediate_size(n):
|
| 66 |
-
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def read_json(path):
|
| 70 |
-
with open(path, "r") as f:
|
| 71 |
-
return json.load(f)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def write_json(text, path):
|
| 75 |
-
with open(path, "w") as f:
|
| 76 |
-
json.dump(text, f)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def write_model(model_path,
|
| 80 |
-
input_base_path,
|
| 81 |
-
model_size,
|
| 82 |
-
num_input_shards=1,
|
| 83 |
-
num_output_shards=2,
|
| 84 |
-
skip_permute=True,
|
| 85 |
-
norm_eps=1e-05):
|
| 86 |
-
# if os.path.exists(model_path):
|
| 87 |
-
# shutil.rmtree(model_path)
|
| 88 |
-
os.makedirs(model_path, exist_ok=True)
|
| 89 |
-
# tmp_model_path = os.path.join(model_path, "tmp")
|
| 90 |
-
tmp_model_path = model_path
|
| 91 |
-
os.makedirs(tmp_model_path, exist_ok=True)
|
| 92 |
-
|
| 93 |
-
num_shards = num_input_shards
|
| 94 |
-
n_layers = llama_s2layer[model_size]
|
| 95 |
-
n_heads = llama_s2heads[model_size]
|
| 96 |
-
n_heads_per_shard = n_heads // num_shards
|
| 97 |
-
n_dense = llama_s2dense[model_size]
|
| 98 |
-
n_hidden = llama_s2hidden[model_size]
|
| 99 |
-
hidden_per_head = n_hidden // n_heads
|
| 100 |
-
base = 10000.0
|
| 101 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head))
|
| 102 |
-
|
| 103 |
-
# permute for sliced rotary
|
| 104 |
-
def permute(w, skip_permute=skip_permute):
|
| 105 |
-
if skip_permute:
|
| 106 |
-
return w
|
| 107 |
-
return w.view(n_heads, n_hidden // n_heads // 2, 2, n_hidden).transpose(1, 2).reshape(n_hidden, n_hidden)
|
| 108 |
-
|
| 109 |
-
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
| 110 |
-
# Load weights
|
| 111 |
-
if num_shards==1:
|
| 112 |
-
# Not sharded
|
| 113 |
-
# (The sharded implementation would also work, but this is simpler.)
|
| 114 |
-
# /pure-mlo-scratch/alhernan/megatron-data/checkpoints/llama2-7b-tp4-pp1-optim/release/mp_rank_00/model_optim_rng.pt
|
| 115 |
-
if os.path.exists(os.path.join(input_base_path, 'release')):
|
| 116 |
-
filename = os.path.join(input_base_path, 'release', 'mp_rank_00', 'model_optim_rng.pt')
|
| 117 |
-
elif input_base_path.split('/')[-1].startswith('iter_'):
|
| 118 |
-
iteration = eval(input_base_path.split('/')[-1].replace('iter_', '').lstrip('0'))
|
| 119 |
-
load_dir = '/'.join(input_base_path.split('/')[:-1])
|
| 120 |
-
filename = os.path.join(input_base_path, 'mp_rank_00', 'model_optim_rng.pt')
|
| 121 |
-
if not os.path.exists(filename):
|
| 122 |
-
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
|
| 123 |
-
else:
|
| 124 |
-
tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
|
| 125 |
-
with open(tracker_filename, 'r') as f:
|
| 126 |
-
metastring = f.read().strip()
|
| 127 |
-
iteration = 'iter_{:07d}'.format(int(metastring))
|
| 128 |
-
filename = os.path.join(input_base_path, iteration, 'mp_rank_00', 'model_optim_rng.pt')
|
| 129 |
-
if not os.path.exists(filename):
|
| 130 |
-
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
|
| 131 |
-
original_filename = filename
|
| 132 |
-
loaded = torch.load(filename, map_location="cpu")['model']['language_model']
|
| 133 |
-
|
| 134 |
-
else:
|
| 135 |
-
# Sharded
|
| 136 |
-
filenames = []
|
| 137 |
-
for i in range(num_shards):
|
| 138 |
-
if os.path.exists(os.path.join(input_base_path, 'release')):
|
| 139 |
-
filename = os.path.join(input_base_path, 'release', f'mp_rank_{i:02d}', 'model_optim_rng.pt')
|
| 140 |
-
else:
|
| 141 |
-
tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
|
| 142 |
-
with open(tracker_filename, 'r') as f:
|
| 143 |
-
metastring = f.read().strip()
|
| 144 |
-
iteration = 'iter_{:07d}'.format(int(metastring))
|
| 145 |
-
filename = os.path.join(input_base_path, iteration, f'mp_rank_{i:02d}', 'model_optim_rng.pt')
|
| 146 |
-
if not os.path.exists(filename):
|
| 147 |
-
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
|
| 148 |
-
filenames.append(filename)
|
| 149 |
-
loaded = [
|
| 150 |
-
torch.load(filenames[i], map_location="cpu")['model']['language_model']
|
| 151 |
-
for i in range(num_shards)
|
| 152 |
-
]
|
| 153 |
-
|
| 154 |
-
print('Llama-Megatron Loaded!')
|
| 155 |
-
param_count = 0
|
| 156 |
-
index_dict = {"weight_map": {}}
|
| 157 |
-
|
| 158 |
-
print(f'Weighted Converting for {n_layers} layers...')
|
| 159 |
-
for layer_i in range(n_layers):
|
| 160 |
-
print(layer_i)
|
| 161 |
-
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
| 162 |
-
if num_shards == 1:
|
| 163 |
-
# Unsharded
|
| 164 |
-
state_dict = {
|
| 165 |
-
f"model.layers.{layer_i}.self_attn.q_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"],
|
| 166 |
-
f"model.layers.{layer_i}.self_attn.k_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"],
|
| 167 |
-
f"model.layers.{layer_i}.self_attn.v_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"],
|
| 168 |
-
f"model.layers.{layer_i}.self_attn.k_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.1.weight"],
|
| 169 |
-
f"model.layers.{layer_i}.self_attn.v_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.1.weight"],
|
| 170 |
-
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"],
|
| 171 |
-
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"],
|
| 172 |
-
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"],
|
| 173 |
-
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"],
|
| 174 |
-
f"model.layers.{layer_i}.input_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.0.weight"],
|
| 175 |
-
f"model.layers.{layer_i}.post_attention_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight"],
|
| 176 |
-
f"model.layers.{layer_i}.input_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.1.weight"],
|
| 177 |
-
f"model.layers.{layer_i}.post_attention_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.1.weight"],
|
| 178 |
-
}
|
| 179 |
-
else:
|
| 180 |
-
raise NotImplemented
|
| 181 |
-
|
| 182 |
-
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
| 183 |
-
for k, v in state_dict.items():
|
| 184 |
-
index_dict["weight_map"][k] = filename
|
| 185 |
-
param_count += v.numel()
|
| 186 |
-
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
| 187 |
-
print(f'Sharded file saved to {filename}')
|
| 188 |
-
|
| 189 |
-
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
| 190 |
-
if num_shards==1:
|
| 191 |
-
# Unsharded
|
| 192 |
-
state_dict = {
|
| 193 |
-
"model.embed_tokens.weight": loaded['embedding']['word_embeddings']['weight'],
|
| 194 |
-
"model.norm.weight": loaded['encoder']['norm.weight'],
|
| 195 |
-
"lm_head.weight": loaded['encoder']['lm_head.weight'],
|
| 196 |
-
}
|
| 197 |
-
else:
|
| 198 |
-
state_dict = {
|
| 199 |
-
"model.embed_tokens.weight": loaded[0]['embedding']['word_embeddings']['weight'],
|
| 200 |
-
"model.norm.weight": loaded[0]['encoder']['norm.weight'],
|
| 201 |
-
"lm_head.weight": loaded[0]['encoder']['lm_head.weight'],
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
loaded_all = torch.load(original_filename, map_location="cpu")['model']
|
| 206 |
-
# Vision Part
|
| 207 |
-
state_dict.update({
|
| 208 |
-
"model.vision_model.embeddings.cls_token": loaded_all['vision_model']['cls_token'],
|
| 209 |
-
"model.vision_model.embeddings.patch_embed.weight": loaded_all['vision_model']['patch_embed']['weight'],
|
| 210 |
-
"model.vision_model.embeddings.position_embedding": loaded_all['vision_model']['position_embeddings'],
|
| 211 |
-
"model.vision_model.embeddings.pre_layernorm.bias": loaded_all['vision_model']['pre_layernorm']['bias'],
|
| 212 |
-
"model.vision_model.embeddings.pre_layernorm.weight": loaded_all['vision_model']['pre_layernorm']['weight'],
|
| 213 |
-
"model.vision_model.post_layernorm.bias": loaded_all['vision_model']['transformer']['final_layernorm.bias'],
|
| 214 |
-
"model.vision_model.post_layernorm.weight": loaded_all['vision_model']['transformer']['final_layernorm.weight'],
|
| 215 |
-
})
|
| 216 |
-
for v_layer_idx in range(24):
|
| 217 |
-
state_dict.update({
|
| 218 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.bias'],
|
| 219 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.weight'],
|
| 220 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.bias'],
|
| 221 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.weight'],
|
| 222 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.bias'],
|
| 223 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.weight'],
|
| 224 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.bias'],
|
| 225 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.weight'],
|
| 226 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.bias'],
|
| 227 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.weight'],
|
| 228 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.bias'],
|
| 229 |
-
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.weight'],
|
| 230 |
-
})
|
| 231 |
-
|
| 232 |
-
# Vision2Text Part: HReducer
|
| 233 |
-
state_dict.update({
|
| 234 |
-
"model.vision2text.ln_q.weight": loaded_all['hreducer3']['ln_q']['weight'],
|
| 235 |
-
"model.vision2text.ln_q.bias": loaded_all['hreducer3']['ln_q']['bias'],
|
| 236 |
-
"model.vision2text.visual_fc.bias": loaded_all['hreducer3']['visual_fc']['bias'],
|
| 237 |
-
"model.vision2text.visual_fc.weight": loaded_all['hreducer3']['visual_fc']['weight'],
|
| 238 |
-
"model.vision2text.vit_eos": loaded_all['hreducer3']['vit_eos'],
|
| 239 |
-
})
|
| 240 |
-
# reducer_before conv (layer 0) + gleu (layer 1)
|
| 241 |
-
state_dict.update({
|
| 242 |
-
f"model.vision2text.reducer_before.0.weight": loaded_all['hreducer3']['reducer_before']["0.weight"],
|
| 243 |
-
f"model.vision2text.reducer_before.0.bias": loaded_all['hreducer3']['reducer_before']["0.bias"],
|
| 244 |
-
})
|
| 245 |
-
# reducer conv
|
| 246 |
-
state_dict.update({
|
| 247 |
-
f"model.vision2text.reducer.weight": loaded_all['hreducer3']['reducer']["weight"],
|
| 248 |
-
f"model.vision2text.reducer.bias": loaded_all['hreducer3']['reducer']["bias"],
|
| 249 |
-
})
|
| 250 |
-
|
| 251 |
-
for k, v in state_dict.items():
|
| 252 |
-
# ic(k, v)
|
| 253 |
-
index_dict["weight_map"][k] = filename
|
| 254 |
-
param_count += v.numel()
|
| 255 |
-
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
| 256 |
-
|
| 257 |
-
# Write configs
|
| 258 |
-
index_dict["metadata"] = {"total_size": param_count * 2}
|
| 259 |
-
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
| 260 |
-
|
| 261 |
-
config = MPLUGDocOwlConfig()
|
| 262 |
-
config.save_pretrained(tmp_model_path)
|
| 263 |
-
|
| 264 |
-
# Make space so we can load the model properly now.
|
| 265 |
-
del state_dict
|
| 266 |
-
del loaded
|
| 267 |
-
del loaded_all
|
| 268 |
-
gc.collect()
|
| 269 |
-
|
| 270 |
-
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
| 271 |
-
# Initialize the tokenizer based on the `spm` model
|
| 272 |
-
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
|
| 273 |
-
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
| 274 |
-
tokenizer = tokenizer_class(input_tokenizer_path)
|
| 275 |
-
tokenizer.save_pretrained(tokenizer_path)
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
def main():
|
| 279 |
-
parser = argparse.ArgumentParser()
|
| 280 |
-
parser.add_argument(
|
| 281 |
-
"--input_dir",
|
| 282 |
-
help="Location of LLaMA_Megatron weights",
|
| 283 |
-
)
|
| 284 |
-
parser.add_argument(
|
| 285 |
-
"--model_size",
|
| 286 |
-
type=int,
|
| 287 |
-
default=7,
|
| 288 |
-
choices=[7, 13, 30, 65, 70],
|
| 289 |
-
)
|
| 290 |
-
parser.add_argument(
|
| 291 |
-
"--num_input_shards",
|
| 292 |
-
type=int,
|
| 293 |
-
default=1,
|
| 294 |
-
)
|
| 295 |
-
parser.add_argument(
|
| 296 |
-
"--num_output_shards",
|
| 297 |
-
type=int,
|
| 298 |
-
default=1,
|
| 299 |
-
)
|
| 300 |
-
parser.add_argument('--skip_permute', action='store_true')
|
| 301 |
-
|
| 302 |
-
parser.add_argument(
|
| 303 |
-
"--output_dir",
|
| 304 |
-
help="Location to write HF model and tokenizer",
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
args = parser.parse_args()
|
| 308 |
-
write_model(
|
| 309 |
-
model_path=args.output_dir,
|
| 310 |
-
input_base_path=args.input_dir,
|
| 311 |
-
model_size=args.model_size,
|
| 312 |
-
num_input_shards=args.num_input_shards,
|
| 313 |
-
num_output_shards=args.num_output_shards,
|
| 314 |
-
skip_permute=args.skip_permute
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
if __name__ == "__main__":
|
| 319 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|