Spaces:
Runtime error
Runtime error
| import os | |
| import pdfplumber | |
| from PIL import Image | |
| import pytesseract | |
| import numpy as np | |
| from flask import Flask, request, jsonify | |
| from flask_cors import CORS | |
| import transformers | |
| from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments | |
| from datasets import load_dataset, concatenate_datasets | |
| import torch | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| app = Flask(__name__) | |
| CORS(app) | |
| UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads') | |
| PEGASUS_MODEL_DIR = '/app/fine_tuned_pegasus' | |
| BERT_MODEL_DIR = '/app/fine_tuned_bert' | |
| LEGALBERT_MODEL_DIR = '/app/fine_tuned_legalbert' | |
| MAX_FILE_SIZE = 100 * 1024 * 1024 | |
| if not os.path.exists(UPLOAD_FOLDER): | |
| os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
| transformers.logging.set_verbosity_error() | |
| os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
| # Pegasus Fine-Tuning | |
| def load_or_finetune_pegasus(): | |
| if os.path.exists(PEGASUS_MODEL_DIR): | |
| print("Loading fine-tuned Pegasus model...") | |
| tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR) | |
| model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR) | |
| else: | |
| print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...") | |
| tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum") | |
| model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") | |
| cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]").rename_column("article", "text").rename_column("highlights", "summary") | |
| xsum = load_dataset("xsum", split="train[:5000]", trust_remote_code=True).rename_column("document", "text") | |
| combined_dataset = concatenate_datasets([cnn_dm, xsum]) | |
| def preprocess_function(examples): | |
| inputs = tokenizer(examples["text"], max_length=512, truncation=True, padding="max_length", return_tensors="pt") | |
| targets = tokenizer(examples["summary"], max_length=400, truncation=True, padding="max_length", return_tensors="pt") | |
| inputs["labels"] = targets["input_ids"] | |
| return inputs | |
| tokenized_dataset = combined_dataset.map(preprocess_function, batched=True) | |
| train_dataset = tokenized_dataset.select(range(8000)) | |
| eval_dataset = tokenized_dataset.select(range(8000, 10000)) | |
| training_args = TrainingArguments( | |
| output_dir="/app/pegasus_finetune", | |
| num_train_epochs=3, | |
| per_device_train_batch_size=1, | |
| per_device_eval_batch_size=1, | |
| warmup_steps=500, | |
| weight_decay=0.01, | |
| logging_dir="./logs", | |
| logging_steps=10, | |
| eval_strategy="epoch", | |
| save_strategy="epoch", | |
| load_best_model_at_end=True, | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| ) | |
| trainer.train() | |
| trainer.save_model(PEGASUS_MODEL_DIR) | |
| tokenizer.save_pretrained(PEGASUS_MODEL_DIR) | |
| print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}") | |
| return tokenizer, model | |
| # BERT Fine-Tuning | |
| def load_or_finetune_bert(): | |
| if os.path.exists(BERT_MODEL_DIR): | |
| print("Loading fine-tuned BERT model...") | |
| tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR) | |
| model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2) | |
| else: | |
| print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...") | |
| tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
| model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) | |
| cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]") | |
| def preprocess_for_extractive(examples): | |
| sentences = [] | |
| labels = [] | |
| for article, highlights in zip(examples["article"], examples["highlights"]): | |
| article_sents = article.split(". ") | |
| highlight_sents = highlights.split(". ") | |
| for sent in article_sents: | |
| if sent.strip(): | |
| is_summary = any(sent.strip() in h for h in highlight_sents) | |
| sentences.append(sent) | |
| labels.append(1 if is_summary else 0) | |
| return {"sentence": sentences, "label": labels} | |
| dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"]) | |
| tokenized_dataset = dataset.map( | |
| lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"), | |
| batched=True | |
| ) | |
| tokenized_dataset = tokenized_dataset.remove_columns(["sentence"]) | |
| train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)))) | |
| eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset))) | |
| training_args = TrainingArguments( | |
| output_dir="/app/bert_finetune", | |
| num_train_epochs=3, | |
| per_device_train_batch_size=8, | |
| per_device_eval_batch_size=8, | |
| warmup_steps=500, | |
| weight_decay=0.01, | |
| logging_dir="./logs", | |
| logging_steps=10, | |
| eval_strategy="epoch", | |
| save_strategy="epoch", | |
| load_best_model_at_end=True, | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| ) | |
| trainer.train() | |
| trainer.save_model(BERT_MODEL_DIR) | |
| tokenizer.save_pretrained(BERT_MODEL_DIR) | |
| print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}") | |
| return tokenizer, model | |
| # LegalBERT Fine-Tuning | |
| def load_or_finetune_legalbert(): | |
| if os.path.exists(LEGALBERT_MODEL_DIR): | |
| print("Loading fine-tuned LegalBERT model...") | |
| tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR) | |
| model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2) | |
| else: | |
| print("Fine-tuning LegalBERT on Billsum for extractive summarization...") | |
| tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased") | |
| model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2) | |
| billsum = load_dataset("billsum", split="train[:5000]") | |
| def preprocess_for_extractive(examples): | |
| sentences = [] | |
| labels = [] | |
| for text, summary in zip(examples["text"], examples["summary"]): | |
| text_sents = text.split(". ") | |
| summary_sents = summary.split(". ") | |
| for sent in text_sents: | |
| if sent.strip(): | |
| is_summary = any(sent.strip() in s for s in summary_sents) | |
| sentences.append(sent) | |
| labels.append(1 if is_summary else 0) | |
| return {"sentence": sentences, "label": labels} | |
| dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"]) | |
| tokenized_dataset = dataset.map( | |
| lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"), | |
| batched=True | |
| ) | |
| tokenized_dataset = tokenized_dataset.remove_columns(["sentence"]) | |
| train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)))) | |
| eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset))) | |
| training_args = TrainingArguments( | |
| output_dir="/app/legalbert_finetune", | |
| num_train_epochs=3, | |
| per_device_train_batch_size=8, | |
| per_device_eval_batch_size=8, | |
| warmup_steps=500, | |
| weight_decay=0.01, | |
| logging_dir="./logs", | |
| logging_steps=10, | |
| eval_strategy="epoch", | |
| save_strategy="epoch", | |
| load_best_model_at_end=True, | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| ) | |
| trainer.train() | |
| trainer.save_model(LEGALBERT_MODEL_DIR) | |
| tokenizer.save_pretrained(LEGALBERT_MODEL_DIR) | |
| print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}") | |
| return tokenizer, model | |
| # Load models | |
| pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus() | |
| bert_tokenizer, bert_model = load_or_finetune_bert() | |
| legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert() | |
| def extract_text_from_pdf(file_path): | |
| text = "" | |
| with pdfplumber.open(file_path) as pdf: | |
| for page in pdf.pages: | |
| text += page.extract_text() or "" | |
| return text | |
| def extract_text_from_image(file_path): | |
| image = Image.open(file_path) | |
| text = pytesseract.image_to_string(image) | |
| return text | |
| def choose_model(text): | |
| legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"] | |
| tfidf = TfidfVectorizer(vocabulary=legal_keywords) | |
| tfidf_matrix = tfidf.fit_transform([text.lower()]) | |
| score = np.sum(tfidf_matrix.toarray()) | |
| if score > 0.1: | |
| return "legalbert" | |
| elif len(text.split()) > 50: | |
| return "pegasus" | |
| else: | |
| return "bert" | |
| def summarize_with_pegasus(text): | |
| inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512) | |
| summary_ids = pegasus_model.generate( | |
| inputs["input_ids"], | |
| max_length=400, min_length=80, length_penalty=1.5, num_beams=4 | |
| ) | |
| return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| def summarize_with_bert(text): | |
| sentences = text.split(". ") | |
| if len(sentences) < 6: | |
| return text | |
| inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
| with torch.no_grad(): | |
| outputs = bert_model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.softmax(logits, dim=1)[:, 1] | |
| key_sentence_idx = probs.argsort(descending=True)[:5] | |
| return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()]) | |
| def summarize_with_legalbert(text): | |
| sentences = text.split(". ") | |
| if len(sentences) < 6: | |
| return text | |
| inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
| with torch.no_grad(): | |
| outputs = legalbert_model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.softmax(logits, dim=1)[:, 1] | |
| key_sentence_idx = probs.argsort(descending=True)[:5] | |
| return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()]) | |
| def summarize_document(): | |
| if 'file' not in request.files: | |
| return jsonify({"error": "No file uploaded"}), 400 | |
| file = request.files['file'] | |
| filename = file.filename | |
| file.seek(0, os.SEEK_END) | |
| file_size = file.tell() | |
| if file_size > MAX_FILE_SIZE: | |
| return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413 | |
| file.seek(0) | |
| file_path = os.path.join(UPLOAD_FOLDER, filename) | |
| try: | |
| file.save(file_path) | |
| except Exception as e: | |
| return jsonify({"error": f"Failed to save file: {str(e)}"}), 500 | |
| try: | |
| if filename.endswith('.pdf'): | |
| text = extract_text_from_pdf(file_path) | |
| elif filename.endswith(('.png', '.jpeg', '.jpg')): | |
| text = extract_text_from_image(file_path) | |
| else: | |
| os.remove(file_path) | |
| return jsonify({"error": "Unsupported file format."}), 400 | |
| except Exception as e: | |
| os.remove(file_path) | |
| return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500 | |
| if not text.strip(): | |
| os.remove(file_path) | |
| return jsonify({"error": "No text extracted"}), 400 | |
| try: | |
| model = choose_model(text) | |
| if model == "pegasus": | |
| summary = summarize_with_pegasus(text) | |
| elif model == "bert": | |
| summary = summarize_with_bert(text) | |
| elif model == "legalbert": | |
| summary = summarize_with_legalbert(text) | |
| except Exception as e: | |
| os.remove(file_path) | |
| return jsonify({"error": f"Summarization failed: {str(e)}"}), 500 | |
| os.remove(file_path) | |
| return jsonify({"model_used": model, "summary": summary}) | |
| if __name__ == '__main__': | |
| port = int(os.environ.get("PORT", 5000)) | |
| app.run(debug=False, host='0.0.0.0', port=port) |