Spaces:
Runtime error
Runtime error
Commit
·
2614912
1
Parent(s):
bed03be
remove unused imports and function, rename functions and fix llmchain init progress
Browse files
app.py
CHANGED
|
@@ -2,20 +2,15 @@ import os
|
|
| 2 |
import re
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
-
import accelerate
|
| 6 |
import chromadb
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
| 9 |
-
import tqdm
|
| 10 |
-
import transformers
|
| 11 |
-
from langchain.chains import ConversationalRetrievalChain, ConversationChain
|
| 12 |
from langchain.memory import ConversationBufferMemory
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 16 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 17 |
from langchain_community.vectorstores import Chroma
|
| 18 |
-
from transformers import AutoTokenizer
|
| 19 |
from unidecode import unidecode
|
| 20 |
|
| 21 |
list_llm = [
|
|
@@ -31,8 +26,7 @@ list_llm = [
|
|
| 31 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 32 |
|
| 33 |
|
| 34 |
-
|
| 35 |
-
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
| 36 |
# Processing for one document only
|
| 37 |
# loader = PyPDFLoader(file_path)
|
| 38 |
# pages = loader.load()
|
|
@@ -48,8 +42,7 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
| 48 |
return doc_splits
|
| 49 |
|
| 50 |
|
| 51 |
-
|
| 52 |
-
def create_db(splits, collection_name):
|
| 53 |
embedding = HuggingFaceEmbeddings()
|
| 54 |
new_client = chromadb.EphemeralClient()
|
| 55 |
vectordb = Chroma.from_documents(
|
|
@@ -61,21 +54,10 @@ def create_db(splits, collection_name):
|
|
| 61 |
return vectordb
|
| 62 |
|
| 63 |
|
| 64 |
-
# Load vector database
|
| 65 |
-
def load_db():
|
| 66 |
-
embedding = HuggingFaceEmbeddings()
|
| 67 |
-
vectordb = Chroma(embedding_function=embedding)
|
| 68 |
-
return vectordb
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Initialize langchain LLM chain
|
| 72 |
def initialize_llmchain(
|
| 73 |
llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
|
| 74 |
):
|
| 75 |
-
progress(0.1, desc="Initializing HF
|
| 76 |
-
|
| 77 |
-
# HuggingFaceHub uses HF inference endpoints
|
| 78 |
-
progress(0.5, desc="Initializing HF Hub...")
|
| 79 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 80 |
llm = HuggingFaceEndpoint(
|
| 81 |
repo_id=llm_model,
|
|
@@ -92,14 +74,14 @@ def initialize_llmchain(
|
|
| 92 |
top_k=top_k,
|
| 93 |
)
|
| 94 |
|
| 95 |
-
progress(0.
|
| 96 |
memory = ConversationBufferMemory(
|
| 97 |
memory_key="chat_history", output_key="answer", return_messages=True
|
| 98 |
)
|
| 99 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
| 100 |
retriever = vector_db.as_retriever()
|
| 101 |
|
| 102 |
-
progress(0.
|
| 103 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 104 |
llm,
|
| 105 |
retriever=retriever,
|
|
@@ -108,6 +90,7 @@ def initialize_llmchain(
|
|
| 108 |
return_source_documents=True,
|
| 109 |
verbose=False,
|
| 110 |
)
|
|
|
|
| 111 |
progress(0.9, desc="Done!")
|
| 112 |
return qa_chain
|
| 113 |
|
|
@@ -148,10 +131,10 @@ def initialize_database(
|
|
| 148 |
collection_name = create_collection_name(list_file_path[0])
|
| 149 |
|
| 150 |
progress(0.25, desc="Loading document...")
|
| 151 |
-
doc_splits =
|
| 152 |
|
| 153 |
progress(0.5, desc="Generating vector database...")
|
| 154 |
-
vector_db =
|
| 155 |
|
| 156 |
progress(0.9, desc="Done!")
|
| 157 |
return vector_db, collection_name, "Complete!"
|
|
|
|
| 2 |
import re
|
| 3 |
from pathlib import Path
|
| 4 |
|
|
|
|
| 5 |
import chromadb
|
| 6 |
import gradio as gr
|
| 7 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
|
|
|
|
|
| 8 |
from langchain.memory import ConversationBufferMemory
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.document_loaders import PyPDFLoader
|
| 11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 12 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 13 |
from langchain_community.vectorstores import Chroma
|
|
|
|
| 14 |
from unidecode import unidecode
|
| 15 |
|
| 16 |
list_llm = [
|
|
|
|
| 26 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 27 |
|
| 28 |
|
| 29 |
+
def load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
| 30 |
# Processing for one document only
|
| 31 |
# loader = PyPDFLoader(file_path)
|
| 32 |
# pages = loader.load()
|
|
|
|
| 42 |
return doc_splits
|
| 43 |
|
| 44 |
|
| 45 |
+
def create_vector_db(splits, collection_name):
|
|
|
|
| 46 |
embedding = HuggingFaceEmbeddings()
|
| 47 |
new_client = chromadb.EphemeralClient()
|
| 48 |
vectordb = Chroma.from_documents(
|
|
|
|
| 54 |
return vectordb
|
| 55 |
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
def initialize_llmchain(
|
| 58 |
llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
|
| 59 |
):
|
| 60 |
+
progress(0.1, desc="Initializing HF Hub...")
|
|
|
|
|
|
|
|
|
|
| 61 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 62 |
llm = HuggingFaceEndpoint(
|
| 63 |
repo_id=llm_model,
|
|
|
|
| 74 |
top_k=top_k,
|
| 75 |
)
|
| 76 |
|
| 77 |
+
progress(0.6, desc="Defining buffer memory...")
|
| 78 |
memory = ConversationBufferMemory(
|
| 79 |
memory_key="chat_history", output_key="answer", return_messages=True
|
| 80 |
)
|
| 81 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
| 82 |
retriever = vector_db.as_retriever()
|
| 83 |
|
| 84 |
+
progress(0.75, desc="Defining retrieval chain...")
|
| 85 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 86 |
llm,
|
| 87 |
retriever=retriever,
|
|
|
|
| 90 |
return_source_documents=True,
|
| 91 |
verbose=False,
|
| 92 |
)
|
| 93 |
+
|
| 94 |
progress(0.9, desc="Done!")
|
| 95 |
return qa_chain
|
| 96 |
|
|
|
|
| 131 |
collection_name = create_collection_name(list_file_path[0])
|
| 132 |
|
| 133 |
progress(0.25, desc="Loading document...")
|
| 134 |
+
doc_splits = load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap)
|
| 135 |
|
| 136 |
progress(0.5, desc="Generating vector database...")
|
| 137 |
+
vector_db = create_vector_db(doc_splits, collection_name)
|
| 138 |
|
| 139 |
progress(0.9, desc="Done!")
|
| 140 |
return vector_db, collection_name, "Complete!"
|