File size: 11,510 Bytes
dd7df46
 
 
 
 
 
 
 
51f7cd4
 
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f7cd4
 
 
dd7df46
 
51f7cd4
dd7df46
 
 
 
 
 
 
 
 
 
51f7cd4
 
 
 
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f7cd4
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f7cd4
 
dd7df46
 
51f7cd4
 
 
 
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f7cd4
 
 
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f7cd4
 
 
dd7df46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
Shared constants for the NLP resources application.
Contains lists of countries, languages, domains, tasks, and utility functions.
"""

import re
from urllib.parse import urlparse

import pandas as pd

# Countries where Spanish is spoken
COUNTRIES = [
    "Spain",
    "Mexico",
    "Argentina",
    "Colombia",
    "Peru",
    "Venezuela",
    "Chile",
    "Ecuador",
    "Guatemala",
    "Cuba",
    "Bolivia",
    "Dominican Republic",
    "Honduras",
    "Paraguay",
    "El Salvador",
    "Nicaragua",
    "Costa Rica",
    "Panama",
    "Uruguay",
    "Puerto Rico",
    "Portugal",
    "Brazil",
    "International",
]

# Languages
LANGUAGES = [
    "spanish",
    "catalan",
    "basque",
    "galician",
    "guarani",
    "quechua",
    "aymara",
    "nauhatl",
    "mapudungun",
    "spain",
    "latam",
    "portuguese",
    "all",
]

# NLP tasks
TASKS = [
    "text classification",
    "sentiment analysis",
    "named entity recognition",
    "part-of-speech tagging",
    "question answering",
    "text summarization",
    "machine translation",
    "language modeling",
    "text generation",
    "information extraction",
    "semantic similarity",
    "natural language inference",
]

# Domains for datasets
DOMAINS = [
    "clinical",
    "legal",
    "financial",
    "scientific",
    "news",
    "social media",
    "literature",
    "general",
    "academic",
]

# Dataset types
DATASET_TYPES = ["pretraining", "benchmark", "supervised fine-tuning", "alignment"]

# Event types
EVENT_TYPES = ["workshop", "talk", "AMA", "round table"]

# Initiative types
INITIATIVE_TYPES = [
    "project",
    "event",
    "research group",
    "community",
    "research institute",
    "non-profit",
    "OS company",
]

# Technical levels (for events)
TECHNICAL_LEVELS = ["1", "2", "3", "4", "5"]


def format_url_for_display(url: str) -> str:
    """
    Format URL for display in tables - show only the meaningful part.

    Args:
        url: Full URL string

    Returns:
        Shortened, readable version of the URL
    """
    if not url or not url.strip():
        return ""

    url = url.strip()

    # Remove protocol
    if url.startswith(("http://", "https://")):
        url = url.split("://", 1)[1]

    # Special handling for common domains
    if "huggingface.co" in url:
        # Extract the meaningful part after huggingface.co
        if "/datasets/" in url:
            return url.split("/datasets/")[-1]
        elif "/models/" in url:
            return url.split("/models/")[-1]
        elif "/collections/" in url:
            return url.split("/collections/")[-1]
        else:
            # Return everything after huggingface.co/
            parts = url.split("huggingface.co/")
            return parts[-1] if len(parts) > 1 else url

    elif "github.com" in url:
        # Extract repo name (owner/repo)
        parts = url.split("github.com/")
        if len(parts) > 1:
            repo_path = parts[-1].split("/")
            if len(repo_path) >= 2:
                return f"{repo_path[0]}/{repo_path[1]}"
        return url

    elif "zenodo.org" in url:
        # Extract record ID
        if "/record/" in url:
            return f"zenodo:{url.split('/record/')[-1].split('/')[0]}"
        return url

    elif "arxiv.org" in url:
        # Extract arXiv ID
        if "/abs/" in url:
            return f"arXiv:{url.split('/abs/')[-1]}"
        elif "/pdf/" in url:
            return f"arXiv:{url.split('/pdf/')[-1].replace('.pdf', '')}"
        return url

    elif "youtube.com" in url or "youtu.be" in url:
        # Extract video ID or title if available
        if "watch?v=" in url:
            video_id = url.split("watch?v=")[-1].split("&")[0]
            return f"YouTube:{video_id[:8]}..."
        elif "youtu.be/" in url:
            video_id = url.split("youtu.be/")[-1].split("?")[0]
            return f"YouTube:{video_id[:8]}..."
        return url

    else:
        # For other URLs, try to extract domain and path
        try:
            parsed = urlparse(
                f"https://{url}" if not url.startswith(("http://", "https://")) else url
            )
            domain = parsed.netloc
            path = parsed.path.strip("/")

            if path:
                # Show domain + first part of path
                path_parts = path.split("/")
                if len(path_parts) > 0 and path_parts[0]:
                    return f"{domain}/{path_parts[0]}"

            return domain
        except:
            # Fallback: limit length
            return url[:30] + "..." if len(url) > 30 else url


def make_url_clickable(url: str, display_text: str = None) -> str:
    """
    Convert URL to clickable HTML link.

    Args:
        url: Full URL
        display_text: Text to display for the link (optional)

    Returns:
        HTML link string
    """
    # Handle non-string types (like float NaN values)
    if url is None or (isinstance(url, float) and pd.isna(url)):
        return ""

    url = str(url).strip()

    if not url or url.lower() in ["nan", "none", ""]:
        return ""

    # Ensure URL has protocol
    if not url.startswith(("http://", "https://")):
        url = f"https://{url}"

    # Use provided display text or format the URL
    text = display_text if display_text else format_url_for_display(url)

    return f'<a target="_blank" href="{url}" style="color: var(--link-text-color); text-decoration: underline; text-decoration-style: dotted;">{text}</a>'


def get_column_display_names():
    """
    Return mapping of column names to pretty display names.

    Returns:
        Dictionary mapping column names to display names
    """
    return {
        # Common fields
        "name": "Name",
        "submitted_by": "Submitted By",
        "date_submitted": "Date Submitted",
        # Dataset fields
        "github_url": "GitHub",
        "huggingface_url": "HF Dataset",
        "zenodo_url": "Zenodo",
        "paper_url": "Paper",
        "website_url": "Website",
        "dataset_type": "Type",
        "task": "Tasks",
        "domain": "Domain",
        "countries": "Countries",
        "languages": "Languages",
        # Model fields
        "familia": "Family",
        "available_sizes": "Sizes (B)",
        "hf_collection_url": "HF Collection",
        # Event fields
        "titulo": "Title",
        "ponente": "Speaker",
        "bio": "Bio",
        "tipo": "Type",
        "tema": "Topic",
        "nivel_tecnico": "Tech Level",
        "fecha": "Date",
        "youtube": "YouTube",
        # Shared task fields
        "conference_name": "Conference",
        "workshop_date": "Workshop Date",
        "registration_deadline": "Registration",
        "data_available_date": "Data Available",
        "submission_deadline": "Submission",
        "more_info_url": "More Info",
        # Initiative fields
        "type": "Type",
    }


def format_dataframe_for_display(df, url_columns=None, hide_columns=None):
    """
    Format a DataFrame for better display in Gradio tables with clickable URLs.

    Args:
        df: Pandas DataFrame
        url_columns: List of column names that contain URLs
        hide_columns: List of column names to hide

    Returns:
        Formatted DataFrame
    """
    if df.empty:
        return df

    # Make a copy to avoid modifying original
    display_df = df.copy()

    # Hide specified columns
    if hide_columns:
        display_df = display_df.drop(
            columns=[col for col in hide_columns if col in display_df.columns]
        )

    # Format URL columns with clickable links
    if url_columns:
        for col in url_columns:
            if col in display_df.columns:
                display_df[col] = display_df[col].apply(
                    lambda x: (
                        make_url_clickable(x) if pd.notna(x) and str(x).strip() else ""
                    )
                )

    # Ensure first column content doesn't wrap (for name/title columns)
    first_col = display_df.columns[0] if len(display_df.columns) > 0 else None
    if first_col:
        # Keep full text but ensure it displays in a single line (no wrapping)
        # Replace line breaks and excessive whitespace to ensure single line display
        display_df[first_col] = display_df[first_col].apply(
            lambda x: str(x).replace("\n", " ").replace("\r", " ").strip() if x else ""
        )

    # Rename columns to pretty names
    column_names = get_column_display_names()
    display_df = display_df.rename(columns=column_names)

    return display_df


def format_dataframe_for_html_display(df, url_columns=None, hide_columns=None):
    """
    Format a DataFrame for HTML display with clickable links.

    Args:
        df: Pandas DataFrame
        url_columns: List of column names that contain URLs
        hide_columns: List of column names to hide

    Returns:
        HTML string representation of the DataFrame
    """
    if df.empty:
        return "<p>No data available</p>"

    # Make a copy to avoid modifying original
    display_df = df.copy()

    # Hide specified columns
    if hide_columns:
        display_df = display_df.drop(
            columns=[col for col in hide_columns if col in display_df.columns]
        )

    # Format URL columns with clickable links
    if url_columns:
        for col in url_columns:
            if col in display_df.columns:
                display_df[col] = display_df[col].apply(
                    lambda x: (
                        make_url_clickable(x) if pd.notna(x) and str(x).strip() else ""
                    )
                )

    # Ensure first column content doesn't wrap (for name/title columns)
    first_col = display_df.columns[0] if len(display_df.columns) > 0 else None
    if first_col:
        # Keep full text but ensure it displays in a single line (no wrapping)
        # Replace line breaks and excessive whitespace to ensure single line display
        display_df[first_col] = display_df[first_col].apply(
            lambda x: str(x).replace("\n", " ").replace("\r", " ").strip() if x else ""
        )

    # Rename columns to pretty names
    column_names = get_column_display_names()
    display_df = display_df.rename(columns=column_names)

    # Convert to HTML with custom styling
    html = display_df.to_html(
        escape=False,  # Allow HTML in cells
        index=False,  # Don't show row indices
        classes="dataframe-table",
        table_id="resources-table",
    )

    # Add custom CSS styling
    styled_html = f"""
    <style>
    .dataframe-table {{
        border-collapse: collapse;
        margin: 25px 0;
        font-size: 0.9em;
        font-family: sans-serif;
        min-width: 400px;
        box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
        width: 100%;
    }}
    .dataframe-table thead tr {{
        background-color: #009879;
        color: #ffffff;
        text-align: left;
    }}
    .dataframe-table th,
    .dataframe-table td {{
        padding: 12px 15px;
        border: 1px solid #dddddd;
    }}
    .dataframe-table tbody tr {{
        border-bottom: 1px solid #dddddd;
    }}
    .dataframe-table tbody tr:nth-of-type(even) {{
        background-color: #f3f3f3;
    }}
    .dataframe-table tbody tr:hover {{
        background-color: #f5f5f5;
    }}
    .dataframe-table a {{
        color: #009879;
        text-decoration: none;
    }}
    .dataframe-table a:hover {{
        text-decoration: underline;
    }}
    </style>
    {html}
    """

    return styled_html