File size: 8,249 Bytes
56cfa73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import json
import math
import os
import sys
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path

import torch
from safetensors.torch import load_file
from torch import nn
from torchdyn.core import NeuralODE

from .modules import AdaLNFlowPredictor, AutoEncoder


@contextmanager
def suppress_stdout():
    original_stdout = sys.stdout
    try:
        sys.stdout = open(os.devnull, "w")
        yield
    finally:
        sys.stdout.close()
        sys.stdout = original_stdout


def cosine_schedule_with_warmup(warmup_steps, total_steps, start_lr, end_lr):
    def lr_lambda(step):
        if step < warmup_steps:
            return step / max(1, warmup_steps)
        progress = (step - warmup_steps) / max(1, total_steps - warmup_steps)
        cosine_decay = 0.5 * (1 + math.cos(math.pi * progress))
        return (start_lr - end_lr) * cosine_decay / start_lr + end_lr / start_lr

    return lr_lambda


@dataclass
class PatchVAEConfig:
    latent_dim: int
    hidden_dim: int
    latent_scaling: tuple[list[float], list[float]] | None
    flow_factory: str
    num_flow_layers: int
    autoencoder_factory: str
    num_autoencoder_layers: int
    convnextformer_num_conv_per_transformer: int = 3
    wavvae_path: str | None = None
    fsq_levels: list[int] | None = None
    bottleneck_size: int | None = None
    latent_stride: int = 2
    vae: bool = False
    causal_transformer: bool = False
    cond_dim: int | None = None
    is_causal: bool = False


class PatchVAE(nn.Module):
    def __init__(self, cfg: PatchVAEConfig):
        super().__init__()
        self.flow_net = AdaLNFlowPredictor(
            feat_dim=cfg.latent_dim * cfg.latent_stride,
            dim=cfg.hidden_dim,
            n_layer=cfg.num_flow_layers,
            layer_factory=cfg.flow_factory,
            cond_dim=cfg.cond_dim,
            is_causal=cfg.is_causal,
        )
        self.autoencoder = AutoEncoder(
            cfg.latent_dim * cfg.latent_stride,
            cfg.hidden_dim,
            cfg.num_autoencoder_layers,
            cfg.autoencoder_factory,
            out_dim=cfg.cond_dim,
            vae=cfg.vae,
            bottleneck_size=cfg.bottleneck_size,
            convnextformer_num_conv_per_transformer=cfg.convnextformer_num_conv_per_transformer,
            is_causal=cfg.is_causal,
        )
        if cfg.latent_scaling is not None:
            mean, std = cfg.latent_scaling
            self.register_buffer("mean_latent_scaling", torch.tensor(mean))
            self.register_buffer("std_latent_scaling", torch.tensor(std))
        else:
            self.mean_latent_scaling = None
            self.std_latent_scaling = None

        self.latent_stride = cfg.latent_stride
        self.latent_dim = cfg.latent_dim
        self.wavvae = None

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: str,
        map_location: str = "cpu",
    ):
        if Path(pretrained_model_name_or_path).exists():
            path = pretrained_model_name_or_path
        else:
            from huggingface_hub import snapshot_download

            path = snapshot_download(pretrained_model_name_or_path)

        with open(Path(path) / "config.json", "r") as f:
            config = json.load(f)
        config = PatchVAEConfig(**config)
        model = cls(config).to(map_location)
        state_dict = load_file(
            Path(path) / "model.st",
            device=map_location,
        )
        model.load_state_dict(state_dict, assign=True)
        if config.wavvae_path is not None:
            from .. import WavVAE

            model.wavvae = WavVAE.from_pretrained(config.wavvae_path).to(map_location)
        else:
            model.wavvae = None

        return model

    def wavvae_from_pretrained(
        self,
        pretrained_model_name_or_path: str,
        *args,
        **kwargs,
    ):
        from .. import WavVAE

        self.wavvae = WavVAE.from_pretrained(
            pretrained_model_name_or_path,
            *args,
            **kwargs,
        )

    def encode(self, wav: torch.Tensor):
        assert self.wavvae is not None, (
            "please provide WavVAE model to encode from waveform"
        )
        z = self.wavvae.encode(wav)
        zz = self.encode_patch(z)
        return zz

    def decode(self, patchvae_latent: torch.Tensor, **kwargs):
        assert self.wavvae is not None, (
            "please provide WavVAE model to decode to waveform"
        )
        z = self.decode_patch(patchvae_latent, **kwargs)
        wav = self.wavvae.decode(z)
        return wav

    def normalize_z(self, z: torch.Tensor):
        if self.mean_latent_scaling is not None:
            z = (z - self.mean_latent_scaling) / self.std_latent_scaling
        return z

    def denormalize_z(self, z: torch.Tensor):
        if self.std_latent_scaling is not None:
            z = z * self.std_latent_scaling + self.mean_latent_scaling
        return z

    def encode_patch(self, z: torch.Tensor, deterministic: bool = False):
        B, T, D = z.shape
        z = self.normalize_z(z)
        if self.latent_stride > 1:
            z = z[:, : T - T % self.latent_stride]
            z = z.reshape(B, T // self.latent_stride, D * self.latent_stride)
        return self.autoencoder.encode(z, deterministic=deterministic)

    def decode_patch(
        self,
        latent: torch.Tensor,
        cfg: float = 2.0,
        num_steps: int = 15,
        solver: str = "euler",
        sensitivity: str = "adjoint",
        temperature: float = 1.0,
        **kwargs,
    ):
        with torch.no_grad():
            z_cond = self.autoencoder.decode(latent).transpose(1, 2)
            if cfg == 1.0:

                def solver_fn(t, Xt, *args, **kwargs):
                    flow = self.flow_net(Xt, z_cond, t.unsqueeze(0))
                    return flow
            else:
                z_cond_uncond = torch.cat((z_cond, torch.zeros_like(z_cond)), dim=0)

                def solver_fn(t, Xt, *args, **kwargs):
                    flow = self.flow_net(
                        Xt.repeat(2, 1, 1), z_cond_uncond, t.unsqueeze(0)
                    )
                    cond, uncond = flow.chunk(2, dim=0)

                    return uncond + cfg * (cond - uncond)

            with suppress_stdout():
                node_ = NeuralODE(
                    solver_fn,
                    solver=solver,
                    sensitivity=sensitivity,
                    **kwargs,
                )
            t_span = torch.linspace(0, 1, num_steps + 1, device=z_cond.device)
            patch_dim = self.latent_dim * self.latent_stride
            x0 = torch.randn(
                z_cond.shape[0],
                patch_dim,
                z_cond.shape[2],
                device=z_cond.device,
            )
            traj = node_.trajectory(
                x0 * temperature,
                t_span=t_span,
            )

            y_hat = traj[-1]
            y_hat = y_hat.transpose(1, 2)
            B, T, D = y_hat.shape
            y_hat = y_hat.reshape(B, T * self.latent_stride, D // self.latent_stride)
            y_hat = self.denormalize_z(y_hat)
        return y_hat

    def forward(
        self,
        z: torch.Tensor,
        t: torch.Tensor,
        drop_cond_rate: float = 0.0,
        drop_vae_rate: float = 0.0,
        sigma: float = 1e-4,
    ):
        z = self.normalize_z(z)
        B, T, D = z.shape
        if self.latent_stride > 1:
            z = z.reshape(B, T // self.latent_stride, D * self.latent_stride)

        prior, ae_loss = self.autoencoder(z, drop_vae_rate=drop_vae_rate)

        if drop_cond_rate > 0.0:
            to_drop = torch.rand(prior.shape[0], device=prior.device) < drop_cond_rate
            prior[to_drop] = 0.0

        x0 = torch.randn_like(z)
        x1 = z

        flow_target = x1 - (1 - sigma) * x0

        alpha = (1 - (1 - sigma) * t).view(-1, 1, 1)
        xt = alpha * x0 + t.view(-1, 1, 1) * x1

        pred = self.flow_net(
            xt.transpose(1, 2),
            prior.transpose(1, 2),
            t,
        )

        flow_loss = nn.functional.mse_loss(flow_target.transpose(1, 2), pred)

        return flow_loss, ae_loss, prior