Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,567 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
from random import random
from typing import Literal
import torch
import torch.nn.functional as F
from torch import nn
from vector_quantize_pytorch import FSQ
from zcodec.models.components.transformer import TransformerBlock
class AdaLayerNormScale(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear = nn.Linear(dim, dim * 3)
self.norm = nn.LayerNorm(dim, elementwise_affine=False)
def forward(self, x, c):
x = self.norm(x)
scale, bias, gate = self.linear(F.silu(c)).chunk(3, dim=1)
shape = x.shape[0] + [1] * (x.dim() - 2) + x.shape[-1]
scale, bias, gate = map(lambda x: x.view(*shape), (scale, bias, gate))
x = x * (1 + scale) + bias
return x, gate
class GaussianFourierTimeEmbedding(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.weight = nn.Parameter(torch.randn(dim), requires_grad=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x[:, None] * self.weight[None, :] * 2 * torch.pi
x = torch.cat((torch.sin(x), torch.cos(x)), dim=1)
return x
LAYER_FACTORIES = {}
def register_flow_layer_factory(name):
def decorator(fn):
LAYER_FACTORIES[name] = fn
return fn
return decorator
@register_flow_layer_factory("convnext")
def SimpleConvNextFactory(dim: int, i: int, n_layer: int, is_causal: bool = False):
return ConvNeXtBlock(dim, elementwise_affine_ln=False, is_causal=is_causal)
@register_flow_layer_factory("mlp")
def MLP(dim: int, i: int, n_layer: int, is_causal: bool = False):
return AdaLNMLP(dim)
@register_flow_layer_factory("sa_transformer")
def SelfAttentionTransformer(dim: int, i: int, n_layer: int, is_causal: bool = False):
return TransformerBlock(dim, 64, elementwise_affine_ln=False, is_causal=is_causal)
def init_weights(m: nn.Module):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def init_adaln_weights(m: nn.Module):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.zeros_(m.bias)
def modulate(x, scale, shift):
return x * (1 + scale[:, None]) + shift[:, None]
class AdaLNFlowPredictor(nn.Module):
def __init__(
self,
feat_dim: int,
dim: int,
n_layer: int,
layer_factory: str,
cond_dim: int | None = None,
is_causal: bool = False,
):
super().__init__()
layer_factory = LAYER_FACTORIES[layer_factory]
self.layers = nn.ModuleList(
[
layer_factory(dim, i, n_layer, is_causal=is_causal)
for i in range(n_layer)
]
)
if cond_dim is None:
cond_dim = feat_dim
self.initial_proj = nn.Linear(feat_dim + cond_dim, dim)
self.adaln_proj = nn.ModuleList([nn.Linear(dim, dim * 3) for _ in self.layers])
self.final_adaln_proj = nn.Linear(dim, dim * 2)
self.out_proj = nn.Linear(dim, feat_dim)
self.final_norm = nn.LayerNorm(dim, elementwise_affine=False)
self.time_emb = GaussianFourierTimeEmbedding(dim // 2)
self.apply(init_weights)
for l in self.adaln_proj:
init_adaln_weights(l)
init_adaln_weights(self.final_adaln_proj)
def forward(
self,
x_t: torch.Tensor,
x_mu: torch.Tensor,
t: torch.Tensor,
):
x_t, x_mu = map(lambda x: x.transpose(1, 2), (x_t, x_mu))
x = self.initial_proj(torch.cat((x_t, x_mu), dim=-1)).transpose(1, 2)
t_emb = self.time_emb(t)
for i, (l, adaln) in enumerate(zip(self.layers, self.adaln_proj)):
scale, shift, gate = F.silu(adaln(t_emb)).chunk(3, dim=1)
x = l(x, scale_shift=(scale, shift), gate=gate)
scale, shift = F.silu(self.final_adaln_proj(t_emb)).chunk(2, dim=1)
x = self.final_norm(x.transpose(1, 2))
x = modulate(x, scale, shift)
x = self.out_proj(x).transpose(1, 2)
return x
class AdaLNMLP(nn.Module):
def __init__(self, hidden_dim):
super().__init__()
self.hidden_dim = hidden_dim
self.in_ln = nn.LayerNorm(hidden_dim, eps=1e-6, elementwise_affine=False)
self.mlp = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim, bias=True),
nn.SiLU(),
nn.Linear(hidden_dim, hidden_dim, bias=True),
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_dim, 4 * hidden_dim, bias=True)
)
def forward(self, x, scale_shift, gate):
x = x.transpose(-1, -2)
h = modulate(self.in_ln(x), *scale_shift)
h = self.mlp(h)
return (x + gate[:, None] * h).transpose(-1, -2)
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
Args:
dim (int): Number of input channels.
intermediate_dim (int): Dimensionality of the intermediate layer.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional LayerNorm. Defaults to None.
"""
def __init__(
self,
dim: int,
intermediate_dim: int | None = None,
layer_scale_init_value: float = 0.0,
elementwise_affine_ln: bool = True,
is_causal: bool = False,
):
super().__init__()
intermediate_dim = intermediate_dim if intermediate_dim is not None else dim * 3
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=0 if is_causal else 3, groups=dim
) # depthwise conv
self.norm = nn.LayerNorm(
dim, eps=1e-6, elementwise_affine=elementwise_affine_ln
)
self.pwconv1 = nn.Linear(
dim, intermediate_dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
self.is_causal = is_causal
def forward(
self,
x: torch.Tensor,
scale_shift: tuple[torch.Tensor, torch.Tensor] | None = None,
gate: torch.Tensor | None = None,
) -> torch.Tensor:
residual = x
if self.is_causal:
x = torch.nn.functional.pad(x, (6, 0))
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
x = self.norm(x)
if scale_shift is not None:
scale, shift = scale_shift
x = x * scale[:, None] + shift[:, None]
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
if gate is not None:
x = gate[:, None] * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
x = residual + x
return x
class ConvNextNet(nn.Module):
def __init__(
self,
dim: int,
n_layers: int,
intermediate_dim: int | None = None,
is_causal: bool = False,
):
super().__init__()
self.net = nn.Sequential(
*[
ConvNeXtBlock(dim, intermediate_dim, is_causal=is_causal)
for _ in range(n_layers)
]
)
def forward(self, x):
return self.net(x.transpose(1, 2)).transpose(1, 2)
def convnext_factory(dim, n_layers, is_causal=False):
return ConvNextNet(dim, n_layers, is_causal=is_causal)
def convnextformer_factory(
dim, n_layers, n_convnext_per_transformer_block, is_causal=False
):
layers = []
for i in range(0, n_layers, n_convnext_per_transformer_block + 1):
layers.append(
ConvNextNet(dim, n_convnext_per_transformer_block, is_causal=is_causal)
)
layers.append(TransformerBlock(dim, 64, is_causal=is_causal))
return nn.Sequential(*layers)
class AutoEncoder(nn.Module):
def __init__(
self,
feat_dim: int,
hidden_dim: int,
num_layers: int,
net_factory: Literal["convnext", "convnextformer_decoder", "convnextformer"],
out_dim: int | None = None,
convnextformer_num_conv_per_transformer: int = 3,
causal_transformer: bool = False,
bottleneck_size: int | None = None,
vae: bool = False,
is_causal: bool = False,
):
super().__init__()
self.embed = nn.Linear(feat_dim, hidden_dim)
if out_dim is None:
out_dim = feat_dim
self.unembed = nn.Linear(hidden_dim, out_dim)
if net_factory == "convnext":
self.encoder_net = convnext_factory(
hidden_dim, num_layers, is_causal=is_causal
)
self.decoder_net = convnext_factory(
hidden_dim, num_layers, is_causal=is_causal
)
elif net_factory == "convnextformer_decoder":
self.encoder_net = convnext_factory(
hidden_dim, num_layers, is_causal=is_causal
)
self.decoder_net = convnextformer_factory(
hidden_dim,
num_layers,
convnextformer_num_conv_per_transformer,
is_causal=is_causal,
)
elif net_factory == "convnextformer":
self.encoder_net = convnextformer_factory(
hidden_dim,
num_layers,
convnextformer_num_conv_per_transformer,
is_causal=is_causal,
)
self.decoder_net = convnextformer_factory(
hidden_dim,
num_layers,
convnextformer_num_conv_per_transformer,
is_causal=is_causal,
)
self.bottleneck = (
nn.Linear(hidden_dim, bottleneck_size * (1 + vae))
if bottleneck_size is not None
else nn.Identity()
)
self.unbottleneck = (
nn.Linear(bottleneck_size, hidden_dim)
if bottleneck_size is not None
else nn.Identity()
)
self.vae = vae
def reparameterize(
self,
mu: torch.Tensor,
logvar: torch.Tensor,
deterministic: bool = False,
drop_vae_rate: float = 0.0,
) -> torch.Tensor:
logvar = torch.clamp(logvar, -30.0, 20.0)
std = torch.exp(0.5 * logvar)
if drop_vae_rate > 0.0:
to_drop = torch.rand(std.shape[0], device=std.device) < drop_vae_rate
eps = torch.randn_like(std)
eps[to_drop] = 0.0
else:
if deterministic:
eps = torch.zeros_like(std)
else:
eps = torch.randn_like(std)
return mu + eps * std
def kl_divergence(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
kl = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
return kl.sum(dim=-1).mean()
def forward(self, x: torch.Tensor, drop_vae_rate: float = 0.0) -> torch.Tensor:
# Encode
x = self.embed(x)
x = self.encoder_net(x)
x = self.bottleneck(x)
if self.vae:
mu, logvar = x.chunk(2, dim=-1)
loss = {
"kl_div": self.kl_divergence(mu, logvar),
"_mu_mean": mu.mean(),
"_mu_std": mu.std(),
"_logvar_mean": logvar.mean(),
"_logvar_std": logvar.std(),
}
x = self.reparameterize(
mu,
logvar,
drop_vae_rate=drop_vae_rate,
)
else:
loss = {}
# Decode
x = self.unbottleneck(x)
x = self.decoder_net(x)
x = self.unembed(x)
return x, loss
def encode(self, x: torch.Tensor, deterministic: bool = False):
x = self.embed(x)
x = self.encoder_net(x)
x = self.bottleneck(x)
if self.vae:
x = self.reparameterize(*x.chunk(2, dim=-1), deterministic=deterministic)
return x
def decode(
self,
latent: torch.Tensor | None = None,
):
x = self.unbottleneck(latent)
x = self.decoder_net(x)
x = self.unembed(x)
return x
|