Mehdi Lakbar
Initial demo of Lina-speech (pardi-speech)
56cfa73
raw
history blame
8.25 kB
import json
import math
import os
import sys
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
import torch
from safetensors.torch import load_file
from torch import nn
from torchdyn.core import NeuralODE
from .modules import AdaLNFlowPredictor, AutoEncoder
@contextmanager
def suppress_stdout():
original_stdout = sys.stdout
try:
sys.stdout = open(os.devnull, "w")
yield
finally:
sys.stdout.close()
sys.stdout = original_stdout
def cosine_schedule_with_warmup(warmup_steps, total_steps, start_lr, end_lr):
def lr_lambda(step):
if step < warmup_steps:
return step / max(1, warmup_steps)
progress = (step - warmup_steps) / max(1, total_steps - warmup_steps)
cosine_decay = 0.5 * (1 + math.cos(math.pi * progress))
return (start_lr - end_lr) * cosine_decay / start_lr + end_lr / start_lr
return lr_lambda
@dataclass
class PatchVAEConfig:
latent_dim: int
hidden_dim: int
latent_scaling: tuple[list[float], list[float]] | None
flow_factory: str
num_flow_layers: int
autoencoder_factory: str
num_autoencoder_layers: int
convnextformer_num_conv_per_transformer: int = 3
wavvae_path: str | None = None
fsq_levels: list[int] | None = None
bottleneck_size: int | None = None
latent_stride: int = 2
vae: bool = False
causal_transformer: bool = False
cond_dim: int | None = None
is_causal: bool = False
class PatchVAE(nn.Module):
def __init__(self, cfg: PatchVAEConfig):
super().__init__()
self.flow_net = AdaLNFlowPredictor(
feat_dim=cfg.latent_dim * cfg.latent_stride,
dim=cfg.hidden_dim,
n_layer=cfg.num_flow_layers,
layer_factory=cfg.flow_factory,
cond_dim=cfg.cond_dim,
is_causal=cfg.is_causal,
)
self.autoencoder = AutoEncoder(
cfg.latent_dim * cfg.latent_stride,
cfg.hidden_dim,
cfg.num_autoencoder_layers,
cfg.autoencoder_factory,
out_dim=cfg.cond_dim,
vae=cfg.vae,
bottleneck_size=cfg.bottleneck_size,
convnextformer_num_conv_per_transformer=cfg.convnextformer_num_conv_per_transformer,
is_causal=cfg.is_causal,
)
if cfg.latent_scaling is not None:
mean, std = cfg.latent_scaling
self.register_buffer("mean_latent_scaling", torch.tensor(mean))
self.register_buffer("std_latent_scaling", torch.tensor(std))
else:
self.mean_latent_scaling = None
self.std_latent_scaling = None
self.latent_stride = cfg.latent_stride
self.latent_dim = cfg.latent_dim
self.wavvae = None
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
map_location: str = "cpu",
):
if Path(pretrained_model_name_or_path).exists():
path = pretrained_model_name_or_path
else:
from huggingface_hub import snapshot_download
path = snapshot_download(pretrained_model_name_or_path)
with open(Path(path) / "config.json", "r") as f:
config = json.load(f)
config = PatchVAEConfig(**config)
model = cls(config).to(map_location)
state_dict = load_file(
Path(path) / "model.st",
device=map_location,
)
model.load_state_dict(state_dict, assign=True)
if config.wavvae_path is not None:
from .. import WavVAE
model.wavvae = WavVAE.from_pretrained(config.wavvae_path).to(map_location)
else:
model.wavvae = None
return model
def wavvae_from_pretrained(
self,
pretrained_model_name_or_path: str,
*args,
**kwargs,
):
from .. import WavVAE
self.wavvae = WavVAE.from_pretrained(
pretrained_model_name_or_path,
*args,
**kwargs,
)
def encode(self, wav: torch.Tensor):
assert self.wavvae is not None, (
"please provide WavVAE model to encode from waveform"
)
z = self.wavvae.encode(wav)
zz = self.encode_patch(z)
return zz
def decode(self, patchvae_latent: torch.Tensor, **kwargs):
assert self.wavvae is not None, (
"please provide WavVAE model to decode to waveform"
)
z = self.decode_patch(patchvae_latent, **kwargs)
wav = self.wavvae.decode(z)
return wav
def normalize_z(self, z: torch.Tensor):
if self.mean_latent_scaling is not None:
z = (z - self.mean_latent_scaling) / self.std_latent_scaling
return z
def denormalize_z(self, z: torch.Tensor):
if self.std_latent_scaling is not None:
z = z * self.std_latent_scaling + self.mean_latent_scaling
return z
def encode_patch(self, z: torch.Tensor, deterministic: bool = False):
B, T, D = z.shape
z = self.normalize_z(z)
if self.latent_stride > 1:
z = z[:, : T - T % self.latent_stride]
z = z.reshape(B, T // self.latent_stride, D * self.latent_stride)
return self.autoencoder.encode(z, deterministic=deterministic)
def decode_patch(
self,
latent: torch.Tensor,
cfg: float = 2.0,
num_steps: int = 15,
solver: str = "euler",
sensitivity: str = "adjoint",
temperature: float = 1.0,
**kwargs,
):
with torch.no_grad():
z_cond = self.autoencoder.decode(latent).transpose(1, 2)
if cfg == 1.0:
def solver_fn(t, Xt, *args, **kwargs):
flow = self.flow_net(Xt, z_cond, t.unsqueeze(0))
return flow
else:
z_cond_uncond = torch.cat((z_cond, torch.zeros_like(z_cond)), dim=0)
def solver_fn(t, Xt, *args, **kwargs):
flow = self.flow_net(
Xt.repeat(2, 1, 1), z_cond_uncond, t.unsqueeze(0)
)
cond, uncond = flow.chunk(2, dim=0)
return uncond + cfg * (cond - uncond)
with suppress_stdout():
node_ = NeuralODE(
solver_fn,
solver=solver,
sensitivity=sensitivity,
**kwargs,
)
t_span = torch.linspace(0, 1, num_steps + 1, device=z_cond.device)
patch_dim = self.latent_dim * self.latent_stride
x0 = torch.randn(
z_cond.shape[0],
patch_dim,
z_cond.shape[2],
device=z_cond.device,
)
traj = node_.trajectory(
x0 * temperature,
t_span=t_span,
)
y_hat = traj[-1]
y_hat = y_hat.transpose(1, 2)
B, T, D = y_hat.shape
y_hat = y_hat.reshape(B, T * self.latent_stride, D // self.latent_stride)
y_hat = self.denormalize_z(y_hat)
return y_hat
def forward(
self,
z: torch.Tensor,
t: torch.Tensor,
drop_cond_rate: float = 0.0,
drop_vae_rate: float = 0.0,
sigma: float = 1e-4,
):
z = self.normalize_z(z)
B, T, D = z.shape
if self.latent_stride > 1:
z = z.reshape(B, T // self.latent_stride, D * self.latent_stride)
prior, ae_loss = self.autoencoder(z, drop_vae_rate=drop_vae_rate)
if drop_cond_rate > 0.0:
to_drop = torch.rand(prior.shape[0], device=prior.device) < drop_cond_rate
prior[to_drop] = 0.0
x0 = torch.randn_like(z)
x1 = z
flow_target = x1 - (1 - sigma) * x0
alpha = (1 - (1 - sigma) * t).view(-1, 1, 1)
xt = alpha * x0 + t.view(-1, 1, 1) * x1
pred = self.flow_net(
xt.transpose(1, 2),
prior.transpose(1, 2),
t,
)
flow_loss = nn.functional.mse_loss(flow_target.transpose(1, 2), pred)
return flow_loss, ae_loss, prior