File size: 39,653 Bytes
280220b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d4152
280220b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>RedHatAI Model Explorer</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        .model-card:hover {
            transform: translateY(-5px);
            box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);
        }
        .loading-spinner {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }
        .tag:hover {
            background-color: #e5e7eb;
        }
        .tag.active {
            background-color: #dc2626;
            color: white;
        }
        .pagination-btn:disabled {
            opacity: 0.5;
            cursor: not-allowed;
        }
    </style>
</head>
<body class="bg-gray-50 min-h-screen">
    <header class="bg-white shadow-sm">
        <div class="max-w-7xl mx-auto px-4 sm:px-6 lg:px-8 py-6">
            <div class="flex flex-col md:flex-row md:items-center md:justify-between">
                <div class="flex items-center">
                    <div class="bg-red-600 p-2 rounded-lg mr-4">
                        <i class="fas fa-robot text-white text-2xl"></i>
                    </div>
                    <h1 class="text-3xl font-bold text-gray-900">RedHatAI Model Explorer</h1>
                </div>
                <div class="mt-4 md:mt-0">
                    <a href="https://huggingface.co/RedHatAI" target="_blank" class="inline-flex items-center px-4 py-2 border border-transparent text-sm font-medium rounded-md shadow-sm text-white bg-red-600 hover:bg-red-700 focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-red-500">
                        <i class="fab fa-hubspot mr-2"></i> View on Hugging Face
                    </a>
                </div>
            </div>
            <p class="mt-2 text-sm text-gray-600">Browse and filter through all models from the RedHatAI organization</p>
        </div>
    </header>

    <main class="max-w-7xl mx-auto px-4 sm:px-6 lg:px-8 py-8">
        <div class="mb-8 bg-white p-6 rounded-lg shadow">
            <div class="flex flex-col md:flex-row md:items-center md:space-x-4">
                <div class="flex-1 mb-4 md:mb-0">
                    <label for="search" class="block text-sm font-medium text-gray-700 mb-1">Search Models</label>
                    <div class="relative">
                        <div class="absolute inset-y-0 left-0 pl-3 flex items-center pointer-events-none">
                            <i class="fas fa-search text-gray-400"></i>
                        </div>
                        <input type="text" id="search" placeholder="Search by model name, description..." class="block w-full pl-10 pr-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-red-500 focus:border-red-500">
                    </div>
                </div>
                <div class="w-full md:w-auto">
                    <label for="filter" class="block text-sm font-medium text-gray-700 mb-1">Filter by Type</label>
                    <select id="filter" class="block w-full pl-3 pr-10 py-2 text-base border border-gray-300 focus:outline-none focus:ring-red-500 focus:border-red-500 sm:text-sm rounded-md">
                        <option value="all">All Models</option>
                        <option value="text-generation">Text Generation</option>
                        <option value="text-classification">Text Classification</option>
                        <option value="image-text-to-text">Multimodal</option>
                        <option value="conversational">Conversational</option>
                    </select>
                </div>
                <div class="w-full md:w-auto">
                    <label for="sort" class="block text-sm font-medium text-gray-700 mb-1">Sort By</label>
                    <select id="sort" class="block w-full pl-3 pr-10 py-2 text-base border border-gray-300 focus:outline-none focus:ring-red-500 focus:border-red-500 sm:text-sm rounded-md">
                        <option value="downloads">Most Downloads</option>
                        <option value="likes">Most Likes</option>
                        <option value="recent">Most Recent</option>
                    </select>
                </div>
            </div>
            <div class="mt-4 flex flex-wrap gap-2">
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="all">All</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="llama">Llama</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="mistral">Mistral</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="deepseek">DeepSeek</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="qwen">Qwen</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="gemma">Gemma</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="fp8">FP8</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="int4">4-bit</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="int8">8-bit</span>
                <span class="tag px-3 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800 cursor-pointer" data-tag="vllm">vLLM</span>
            </div>
        </div>

        <div id="stats" class="mb-6 bg-white p-4 rounded-lg shadow hidden">
            <div class="grid grid-cols-1 md:grid-cols-3 gap-4">
                <div class="bg-gray-50 p-4 rounded-lg">
                    <div class="flex items-center">
                        <div class="bg-red-100 p-2 rounded-full mr-3">
                            <i class="fas fa-download text-red-600"></i>
                        </div>
                        <div>
                            <p class="text-sm text-gray-500">Downloads this month</p>
                            <p id="total-downloads" class="text-xl font-semibold">-</p>
                        </div>
                    </div>
                </div>
                <div class="bg-gray-50 p-4 rounded-lg">
                    <div class="flex items-center">
                        <div class="bg-red-100 p-2 rounded-full mr-3">
                            <i class="fas fa-heart text-red-600"></i>
                        </div>
                        <div>
                            <p class="text-sm text-gray-500">Total Likes</p>
                            <p id="total-likes" class="text-xl font-semibold">-</p>
                        </div>
                    </div>
                </div>
                <div class="bg-gray-50 p-4 rounded-lg">
                    <div class="flex items-center">
                        <div class="bg-red-100 p-2 rounded-full mr-3">
                            <i class="fas fa-cube text-red-600"></i>
                        </div>
                        <div>
                            <p class="text-sm text-gray-500">Total Models</p>
                            <p id="total-models" class="text-xl font-semibold">-</p>
                        </div>
                    </div>
                </div>
            </div>
        </div>

        <div id="loading" class="flex justify-center items-center py-12">
            <div class="loading-spinner h-12 w-12 border-4 border-red-500 border-t-transparent rounded-full"></div>
            <span class="ml-3 text-gray-600">Loading models...</span>
        </div>

        <div id="models-container" class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-6 hidden">
            <!-- Models will be inserted here by JavaScript -->
        </div>

        <div id="no-results" class="hidden text-center py-12">
            <i class="fas fa-exclamation-circle text-gray-400 text-5xl mb-4"></i>
            <h3 class="text-lg font-medium text-gray-900">No models found</h3>
            <p class="mt-1 text-sm text-gray-500">Try adjusting your search or filter criteria</p>
        </div>

        <div class="mt-8 flex justify-between items-center">
            <button id="prev-page" class="px-4 py-2 border border-gray-300 text-sm font-medium rounded-md text-gray-700 bg-white hover:bg-gray-50 focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-red-500 disabled:opacity-50" disabled>
                <i class="fas fa-chevron-left mr-2"></i> Previous
            </button>
            <span id="page-info" class="text-sm text-gray-600">Page 1 of 1</span>
            <button id="next-page" class="px-4 py-2 border border-gray-300 text-sm font-medium rounded-md text-gray-700 bg-white hover:bg-gray-50 focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-red-500 disabled:opacity-50" disabled>
                Next <i class="fas fa-chevron-right ml-2"></i>
            </button>
        </div>
    </main>

    <footer class="bg-white border-t border-gray-200 mt-12">
        <div class="max-w-7xl mx-auto px-4 sm:px-6 lg:px-8 py-6">
            <div class="flex flex-col md:flex-row justify-between items-center">
                <div class="flex items-center">
                    <div class="bg-red-600 p-2 rounded-lg mr-4">
                        <i class="fas fa-robot text-white text-xl"></i>
                    </div>
                    <p class="text-gray-500 text-sm">RedHatAI Model Explorer - Not affiliated with Red Hat or Hugging Face</p>
                </div>
                <div class="mt-4 md:mt-0">
                    <a href="https://github.com/RedHatAI" target="_blank" class="text-gray-400 hover:text-gray-500">
                        <i class="fab fa-github text-2xl"></i>
                    </a>
                </div>
            </div>
        </div>
    </footer>

    <script>
        document.addEventListener('DOMContentLoaded', function() {
            // DOM elements
            const searchInput = document.getElementById('search');
            const filterSelect = document.getElementById('filter');
            const sortSelect = document.getElementById('sort');
            const modelsContainer = document.getElementById('models-container');
            const loadingElement = document.getElementById('loading');
            const noResultsElement = document.getElementById('no-results');
            const prevPageButton = document.getElementById('prev-page');
            const nextPageButton = document.getElementById('next-page');
            const pageInfoElement = document.getElementById('page-info');
            const tags = document.querySelectorAll('.tag');
            const statsContainer = document.getElementById('stats');
            const totalDownloadsElement = document.getElementById('total-downloads');
            const totalLikesElement = document.getElementById('total-likes');
            const totalModelsElement = document.getElementById('total-models');

            // State variables
            let allModels = [];
            let filteredModels = [];
            let currentPage = 1;
            const modelsPerPage = 9;
            let activeTag = 'all';

            // Initialize the app
            fetchModels();

            // Event listeners
            searchInput.addEventListener('input', debounce(filterModels, 300));
            filterSelect.addEventListener('change', filterModels);
            sortSelect.addEventListener('change', filterModels);
            prevPageButton.addEventListener('click', goToPreviousPage);
            nextPageButton.addEventListener('click', goToNextPage);
            tags.forEach(tag => tag.addEventListener('click', filterByTag));

            // Fetch models from Hugging Face API
            async function fetchModels() {
                try {
                    loadingElement.classList.remove('hidden');
                    
                    // In a real app, you would fetch from the API:
                    const response = await fetch('https://huggingface.co/api/models?author=RedHatAI');
                    allModels = await response.json();
                    
                    // // For demo purposes, we'll use the sample data from your example
                    // allModels = [
                    //     {
                    //         "_id": "67f7a165ec6cd206ef5da57f",
                    //         "id": "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",
                    //         "likes": 6,
                    //         "trendingScore": 6,
                    //         "private": false,
                    //         "downloads": 1232,
                    //         "tags": ["safetensors", "llama4", "base_model:meta-llama/Llama-4-Scout-17B-16E-Instruct", "base_model:quantized:meta-llama/Llama-4-Scout-17B-16E-Instruct", "compressed-tensors", "region:us"],
                    //         "createdAt": "2025-04-10T10:45:57.000Z",
                    //         "modelId": "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",
                    //         "pipeline_tag": "text-generation"
                    //     },
                    //     {
                    //         "_id": "66a02afb813431cd7a6bca12",
                    //         "id": "RedHatAI/Meta-Llama-3.1-70B-Instruct-FP8",
                    //         "likes": 45,
                    //         "trendingScore": 3,
                    //         "private": false,
                    //         "downloads": 182800,
                    //         "tags": ["transformers", "safetensors", "llama", "text-generation", "fp8", "vllm", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.1-70B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-70B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "createdAt": "2024-07-23T22:13:15.000Z",
                    //         "modelId": "RedHatAI/Meta-Llama-3.1-70B-Instruct-FP8"
                    //     },
                    //     {
                    //         "_id": "664b9a005df8c7926f78be84",
                    //         "id": "RedHatAI/Meta-Llama-3-8B-Instruct-FP8-KV",
                    //         "likes": 8,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 3950,
                    //         "tags": ["transformers", "safetensors", "llama", "text-generation", "fp8", "vllm", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "createdAt": "2025-05-20T18:44:16.000Z",
                    //         "modelId": "RedHatAI/Meta-Llama-3-8B-Instruct-FP8-KV"
                    //     },
                    //     {
                    //         "_id": "66a3f1c5ee3de8c56ef34fa3",
                    //         "id": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",
                    //         "likes": 27,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 156851,
                    //         "tags": ["transformers", "safetensors", "llama", "text-generation", "int4", "vllm", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "createdAt": "2024-07-26T18:58:13.000Z",
                    //         "modelId": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
                    //     },
                    //     {
                    //         "_id": "66aa715f1b4923ce7bb7d49d",
                    //         "id": "RedHatAI/Meta-Llama-3.1-8B-quantized.w8a8",
                    //         "likes": 3,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 224,
                    //         "tags": ["transformers", "safetensors", "llama", "text-generation", "int8", "vllm", "quantized", "8-bit", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2210.17323", "base_model:meta-llama/Llama-3.1-8B", "base_model:quantized:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "createdAt": "2024-07-31T17:16:15.000Z",
                    //         "modelId": "RedHatAI/Meta-Llama-3.1-8B-quantized.w8a8"
                    //     },
                    //     {
                    //         "_id": "66be6896182d5a69aee95889",
                    //         "id": "RedHatAI/gemma-2-9b-it-quantized.w4a16",
                    //         "likes": 2,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 88,
                    //         "tags": ["safetensors", "gemma2", "text-generation", "conversational", "en", "arxiv:2210.17323", "license:llama2", "compressed-tensors", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "createdAt": "2024-08-15T20:44:06.000Z",
                    //         "modelId": "RedHatAI/gemma-2-9b-it-quantized.w4a16"
                    //     },
                    //     {
                    //         "_id": "678e9356b12fa7d661ccf013",
                    //         "id": "RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8",
                    //         "likes": 6,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 4707,
                    //         "tags": ["safetensors", "llama", "int8", "vllm", "chat", "neuralmagic", "llmcompressor", "text-generation", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:quantized:meta-llama/Llama-3.3-70B-Instruct", "license:llama3.3", "8-bit", "compressed-tensors", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "createdAt": "2025-01-20T18:17:58.000Z",
                    //         "modelId": "RedHatAI/Llama-3.3-70B-Instruct-quantized.w8a8"
                    //     },
                    //     {
                    //         "_id": "679e94cd49b5b38e4fa2d8d0",
                    //         "id": "RedHatAI/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic",
                    //         "likes": 8,
                    //         "trendingScore": 1,
                    //         "private": false,
                    //         "downloads": 135908,
                    //         "tags": ["transformers", "safetensors", "llama", "text-generation", "deepseek", "fp8", "vllm", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us"],
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "createdAt": "2025-02-01T21:40:29.000Z",
                    //         "modelId": "RedHatAI/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic"
                    //     },
                    //     {
                    //         "_id": "679becee4378dbc3579ac11a",
                    //         "id": "RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic",
                    //         "private": false,
                    //         "pipeline_tag": "text-generation",
                    //         "library_name": "transformers",
                    //         "tags": ["transformers", "safetensors", "mistral", "text-generation", "mistral-small", "fp8", "vllm", "conversational", "en", "base_model:mistralai/Mistral-Small-24B-Instruct-2501", "base_model:quantized:mistralai/Mistral-Small-24B-Instruct-2501", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us"],
                    //         "downloads": 229986,
                    //         "likes": 12,
                    //         "modelId": "RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic",
                    //         "author": "RedHatAI",
                    //         "sha": "9cb69aeda1e1162aa9c00c399105703c06214220",
                    //         "lastModified": "2025-01-31T08:41:28.000Z",
                    //         "gated": false,
                    //         "disabled": false,
                    //         "widgetData": [
                    //             {"text": "Hi, what can you help me with?"},
                    //             {"text": "What is 84 * 3 / 2?"},
                    //             {"text": "Tell me an interesting fact about the universe!"},
                    //             {"text": "Explain quantum computing in simple terms."}
                    //         ],
                    //         "config": {
                    //             "architectures": ["MistralForCausalLM"],
                    //             "model_type": "mistral",
                    //             "quantization_config": {"quant_method": "compressed-tensors"},
                    //             "tokenizer_config": {
                    //                 "bos_token": "<s>",
                    //                 "chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n    {%- set system_message = messages[0]['content'] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = default_system_message %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n    {%- if message['role'] == 'user' %}\n        {{- '[INST]' + message['content'] + '[/INST]' }}\n    {%- elif message['role'] == 'system' %}\n        {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n    {%- elif message['role'] == 'assistant' %}\n        {{- message['content'] + eos_token }}\n    {%- else %}\n        {{- raise_exception('Only user, system and assistant roles are supported!') }}\n    {%- endif %}\n{%- endfor %}",
                    //                 "eos_token": "</s>",
                    //                 "unk_token": "<unk>",
                    //                 "use_default_system_prompt": false
                    //             }
                    //         },
                    //         "cardData": {
                    //             "license": "apache-2.0",
                    //             "language": ["en"],
                    //             "tags": ["mistral", "mistral-small", "fp8", "vllm"],
                    //             "base_model": "mistralai/Mistral-Small-24B-Instruct-2501",
                    //             "library_name": "transformers"
                    //         },
                    //         "transformersInfo": {
                    //             "auto_model": "AutoModelForCausalLM",
                    //             "pipeline_tag": "text-generation",
                    //             "processor": "AutoTokenizer"
                    //         },
                    //         "siblings": [
                    //             {"rfilename": ".gitattributes"},
                    //             {"rfilename": "README.md"},
                    //             {"rfilename": "config.json"},
                    //             {"rfilename": "generation_config.json"},
                    //             {"rfilename": "model-00001-of-00006.safetensors"},
                    //             {"rfilename": "model-00002-of-00006.safetensors"},
                    //             {"rfilename": "model-00003-of-00006.safetensors"},
                    //             {"rfilename": "model-00004-of-00006.safetensors"},
                    //             {"rfilename": "model-00005-of-00006.safetensors"},
                    //             {"rfilename": "model-00006-of-00006.safetensors"},
                    //             {"rfilename": "model.safetensors.index.json"},
                    //             {"rfilename": "recipe.yaml"},
                    //             {"rfilename": "special_tokens_map.json"},
                    //             {"rfilename": "tokenizer.json"},
                    //             {"rfilename": "tokenizer_config.json"}
                    //         ],
                    //         "spaces": ["KBaba7/Quant", "bhaskartripathi/LLM_Quantization", "totolook/Quant", "FallnAI/Quantize-HF-Models", "ruslanmv/convert_to_gguf", "K00B404/LLM_Quantization"],
                    //         "createdAt": "2025-01-30T21:19:42.000Z",
                    //         "safetensors": {
                    //             "parameters": {
                    //                 "BF16": 1345868800,
                    //                 "F8_E4M3": 22229811200
                    //             },
                    //             "total": 23575680000
                    //         },
                    //         "usedStorage": 24938701317
                    //     }
                    // ];

                    // Calculate stats
                    calculateStats(allModels);
                    
                    // Initial display
                    filterModels();
                    
                } catch (error) {
                    console.error('Error fetching models:', error);
                    loadingElement.innerHTML = `
                        <div class="text-center">
                            <i class="fas fa-exclamation-triangle text-red-500 text-4xl mb-3"></i>
                            <p class="text-red-600">Failed to load models. Please try again later.</p>
                        </div>
                    `;
                }
            }

            // Calculate statistics
            function calculateStats(models) {
                const totalDownloads = models.reduce((sum, model) => sum + (model.downloads || 0), 0);
                const totalLikes = models.reduce((sum, model) => sum + (model.likes || 0), 0);
                
                totalDownloadsElement.textContent = totalDownloads.toLocaleString();
                totalLikesElement.textContent = totalLikes.toLocaleString();
                totalModelsElement.textContent = models.length.toLocaleString();
                
                statsContainer.classList.remove('hidden');
            }

            // Filter models based on search, filter and sort criteria
            function filterModels() {
                const searchTerm = searchInput.value.toLowerCase();
                const filterValue = filterSelect.value;
                const sortValue = sortSelect.value;
                
                filteredModels = allModels.filter(model => {
                    // Skip private models
                    if (model.private) return false;
                    
                    // Search term matching
                    const matchesSearch = model.id.toLowerCase().includes(searchTerm) || 
                                         (model.cardData && model.cardData.language && 
                                          model.cardData.language.join(' ').toLowerCase().includes(searchTerm)) ||
                                         (model.tags && model.tags.join(' ').toLowerCase().includes(searchTerm));
                    
                    // Filter matching
                    const matchesFilter = filterValue === 'all' || 
                                         (model.pipeline_tag && model.pipeline_tag === filterValue) ||
                                         (model.tags && model.tags.includes(filterValue));
                    
                    return matchesSearch && matchesFilter;
                });
                
                // Sort models
                if (sortValue === 'downloads') {
                    filteredModels.sort((a, b) => (b.downloads || 0) - (a.downloads || 0));
                } else if (sortValue === 'likes') {
                    filteredModels.sort((a, b) => (b.likes || 0) - (a.likes || 0));
                } else if (sortValue === 'recent') {
                    filteredModels.sort((a, b) => new Date(b.createdAt || b.lastModified || 0) - new Date(a.createdAt || a.lastModified || 0));
                }
                
                // Reset to first page when filtering
                currentPage = 1;
                displayPaginatedModels();
            }

            // Filter by tag
            function filterByTag(e) {
                const tag = e.target.dataset.tag;
                activeTag = tag;
                
                // Update active tag styling
                tags.forEach(t => {
                    if (t.dataset.tag === tag) {
                        t.classList.add('active');
                    } else {
                        t.classList.remove('active');
                    }
                });
                
                if (tag === 'all') {
                    filterSelect.value = 'all';
                    searchInput.value = '';
                    filteredModels = [...allModels];
                } else {
                    filteredModels = allModels.filter(model => 
                        model.tags && model.tags.some(t => t.includes(tag))
                    );
                }
                
                currentPage = 1;
                displayPaginatedModels();
            }

            // Display paginated models
            function displayPaginatedModels() {
                loadingElement.classList.add('hidden');
                
                if (filteredModels.length === 0) {
                    noResultsElement.classList.remove('hidden');
                    modelsContainer.classList.add('hidden');
                    return;
                }
                
                noResultsElement.classList.add('hidden');
                modelsContainer.classList.remove('hidden');
                
                // Calculate pagination
                const totalPages = Math.ceil(filteredModels.length / modelsPerPage);
                const startIndex = (currentPage - 1) * modelsPerPage;
                const endIndex = Math.min(startIndex + modelsPerPage, filteredModels.length);
                const paginatedModels = filteredModels.slice(startIndex, endIndex);
                
                // Update pagination controls
                pageInfoElement.textContent = `Page ${currentPage} of ${totalPages}`;
                prevPageButton.disabled = currentPage === 1;
                nextPageButton.disabled = currentPage === totalPages;
                
                // Clear and repopulate models container
                modelsContainer.innerHTML = '';
                
                paginatedModels.forEach(model => {
                    const modelCard = document.createElement('div');
                    modelCard.className = 'model-card bg-white rounded-lg shadow-md overflow-hidden transition-all duration-200 ease-in-out';
                    
                    // Determine icon based on model type
                    let icon, iconColor;
                    if (model.pipeline_tag === 'text-generation' || model.tags?.includes('text-generation')) {
                        icon = 'fa-comment-alt';
                        iconColor = 'text-blue-500';
                    } else if (model.pipeline_tag === 'image-text-to-text' || model.tags?.includes('vision')) {
                        icon = 'fa-image';
                        iconColor = 'text-green-500';
                    } else if (model.pipeline_tag === 'conversational' || model.tags?.includes('conversational')) {
                        icon = 'fa-comments';
                        iconColor = 'text-purple-500';
                    } else {
                        icon = 'fa-cube';
                        iconColor = 'text-gray-500';
                    }
                    
                    // Format date
                    const date = model.createdAt || model.lastModified;
                    const formattedDate = date ? new Date(date).toLocaleDateString() : 'Unknown';
                    
                    // Create model card
                    modelCard.innerHTML = `
                        <div class="p-6">
                            <div class="flex items-start">
                                <div class="flex-shrink-0">
                                    <i class="fas ${icon} ${iconColor} text-3xl"></i>
                                </div>
                                <div class="ml-4">
                                    <h3 class="text-lg font-medium text-gray-900">${model.id.split('/')[1]}</h3>
                                    <p class="mt-1 text-sm text-gray-500">${model.id}</p>
                                </div>
                            </div>
                            ${model.cardData?.license ? `<p class="mt-2 text-xs text-gray-500"><span class="font-medium">License:</span> ${model.cardData.license}</p>` : ''}
                            ${model.cardData?.language ? `<p class="mt-1 text-xs text-gray-500"><span class="font-medium">Languages:</span> ${model.cardData.language.join(', ')}</p>` : ''}
                            <div class="mt-4 flex flex-wrap gap-2">
                                ${model.tags ? model.tags.slice(0, 5).map(tag => `<span class="px-2 py-1 rounded-full text-xs font-medium bg-gray-100 text-gray-800">${tag}</span>`).join('') : ''}
                            </div>
                        </div>
                        <div class="bg-gray-50 px-6 py-4 border-t border-gray-200">
                            <div class="flex justify-between items-center">
                                <div class="flex items-center">
                                    <i class="fas fa-download text-gray-400 mr-1"></i>
                                    <span class="text-xs text-gray-500">${(model.downloads || 0).toLocaleString()}</span>
                                </div>
                                <div class="flex items-center">
                                    <i class="fas fa-heart text-gray-400 mr-1"></i>
                                    <span class="text-xs text-gray-500">${(model.likes || 0).toLocaleString()}</span>
                                </div>
                                <div class="flex items-center">
                                    <i class="fas fa-calendar-alt text-gray-400 mr-1"></i>
                                    <span class="text-xs text-gray-500">${formattedDate}</span>
                                </div>
                            </div>
                        </div>
                        <div class="px-6 py-3 bg-gray-50 border-t border-gray-200">
                            <a href="https://huggingface.co/${model.id}" target="_blank" class="w-full flex items-center justify-center px-4 py-2 border border-transparent text-sm font-medium rounded-md text-white bg-red-600 hover:bg-red-700">
                                <i class="fab fa-hubspot mr-2"></i> View Model
                            </a>
                        </div>
                    `;
                    
                    modelsContainer.appendChild(modelCard);
                });
            }

            // Pagination functions
            function goToPreviousPage() {
                if (currentPage > 1) {
                    currentPage--;
                    displayPaginatedModels();
                }
            }

            function goToNextPage() {
                const totalPages = Math.ceil(filteredModels.length / modelsPerPage);
                if (currentPage < totalPages) {
                    currentPage++;
                    displayPaginatedModels();
                }
            }

            // Utility function for debouncing
            function debounce(func, wait) {
                let timeout;
                return function() {
                    const context = this;
                    const args = arguments;
                    clearTimeout(timeout);
                    timeout = setTimeout(() => {
                        func.apply(context, args);
                    }, wait);
                };
            }
        });
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=mgoin/redhatai-model-explorer" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>