Spaces:
Runtime error
Runtime error
| import os | |
| import itertools | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"device: {device}") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "rinna/japanese-gpt-neox-3.6b-instruction-sft", | |
| device_map="auto", | |
| torch_dtype=torch.float16, | |
| ) | |
| model = model.to(device) | |
| def inference_func(prompt, max_new_tokens=128, temperature=0.7): | |
| token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") | |
| output_ids = model.generate( | |
| token_ids.to(model.device), | |
| do_sample=True, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| pad_token_id=tokenizer.pad_token_id, | |
| bos_token_id=tokenizer.bos_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| ) | |
| output = tokenizer.decode( | |
| output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True | |
| ) | |
| output = output.replace("<NL>", "\n") | |
| return output | |
| def make_prompt(message, chat_history, max_context_size: int = 10): | |
| contexts = chat_history + [[message, ""]] | |
| contexts = list(itertools.chain.from_iterable(contexts)) | |
| if max_context_size > 0: | |
| context_size = max_context_size - 1 | |
| else: | |
| context_size = 100000 | |
| contexts = contexts[-context_size:] | |
| prompt = [] | |
| for idx, context in enumerate(reversed(contexts)): | |
| if idx % 2 == 0: | |
| prompt = [f"システム: {context}"] + prompt | |
| else: | |
| prompt = [f"ユーザー: {context}"] + prompt | |
| prompt = "<NL>".join(prompt) | |
| return prompt | |
| def interact_func(message, chat_history, max_context_size, max_new_tokens, temperature): | |
| prompt = make_prompt(message, chat_history, max_context_size) | |
| print(f"prompt: {prompt}") | |
| generated = inference_func(prompt, max_new_tokens, temperature) | |
| print(f"generated: {generated}") | |
| chat_history.append((message, generated)) | |
| return "", chat_history | |
| ORIGINAL_SPACE_ID = "mkshing/rinna-japanese-gpt-neox-3.6b-instruction-sft" | |
| SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID) | |
| SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU. | |
| <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> | |
| """ | |
| if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID: | |
| SETTINGS = ( | |
| f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>' | |
| ) | |
| else: | |
| SETTINGS = "Settings" | |
| CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU. | |
| <center> | |
| You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. | |
| "T4 small" is sufficient to run this demo. | |
| </center> | |
| """ | |
| def show_warning(warning_text: str) -> gr.Blocks: | |
| with gr.Blocks() as demo: | |
| with gr.Box(): | |
| gr.Markdown(warning_text) | |
| return demo | |
| with gr.Blocks() as demo: | |
| if os.getenv('IS_SHARED_UI'): | |
| show_warning(SHARED_UI_WARNING) | |
| if not torch.cuda.is_available(): | |
| show_warning(CUDA_NOT_AVAILABLE_WARNING) | |
| gr.Markdown("""# Chat with `rinna/japanese-gpt-neox-3.6b-instruction-sft` | |
| <a href=\"https://colab.research.google.com/github/mkshing/notebooks/blob/main/rinna_japanese_gpt_neox_3_6b_instruction_sft.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a> | |
| This demo is a chat UI for [rinna/japanese-gpt-neox-3.6b-instruction-sft](https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft). | |
| """) | |
| with gr.Accordion("Configs", open=False): | |
| # max_context_size = the number of turns * 2 | |
| max_context_size = gr.Number(value=10, label="max_context_size", precision=0) | |
| max_new_tokens = gr.Number(value=128, label="max_new_tokens", precision=0) | |
| temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="temperature") | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox() | |
| clear = gr.Button("Clear") | |
| msg.submit( | |
| interact_func, | |
| [msg, chatbot, max_context_size, max_new_tokens, temperature], | |
| [msg, chatbot], | |
| ) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |