Spaces:
Sleeping
Sleeping
Dynamic loading
Browse filesTrying to reduce memory
app.py
CHANGED
|
@@ -36,42 +36,42 @@ PIPELINES = [
|
|
| 36 |
{
|
| 37 |
'id': 1,
|
| 38 |
'name': 'Baseline',
|
| 39 |
-
'
|
| 40 |
},
|
| 41 |
{
|
| 42 |
'id': 2,
|
| 43 |
'name': 'Trained on a FeedForward NN',
|
| 44 |
-
'
|
| 45 |
},
|
| 46 |
{
|
| 47 |
'id': 3,
|
| 48 |
'name': 'Trained on a CRF',
|
| 49 |
-
'
|
| 50 |
},
|
| 51 |
{
|
| 52 |
'id': 4,
|
| 53 |
'name': 'Trained on a small dataset',
|
| 54 |
-
'
|
| 55 |
-
},
|
| 56 |
{
|
| 57 |
'id': 5,
|
| 58 |
'name': 'Trained on a large dataset',
|
| 59 |
-
'
|
| 60 |
},
|
| 61 |
{
|
| 62 |
'id': 6,
|
| 63 |
'name': 'Embedded using TFIDF',
|
| 64 |
-
'
|
| 65 |
},
|
| 66 |
{
|
| 67 |
'id': 7,
|
| 68 |
'name': 'Embedded using GloVe',
|
| 69 |
-
'
|
| 70 |
},
|
| 71 |
{
|
| 72 |
'id': 8,
|
| 73 |
'name': 'Embedded using Bio2Vec',
|
| 74 |
-
'
|
| 75 |
},
|
| 76 |
|
| 77 |
]
|
|
@@ -79,7 +79,7 @@ PIPELINES = [
|
|
| 79 |
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
| 80 |
|
| 81 |
def get_pipeline_by_id(pipelines, pipeline_id):
|
| 82 |
-
return next((p['
|
| 83 |
|
| 84 |
def get_name_by_id(pipelines, pipeline_id):
|
| 85 |
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
|
@@ -130,7 +130,7 @@ def get_data():
|
|
| 130 |
tokens_fomatted = pd.Series([pd.Series(tokens)])
|
| 131 |
|
| 132 |
pipeline_id = int(request.form['pipeline_select'])
|
| 133 |
-
pipeline = get_pipeline_by_id(PIPELINES, pipeline_id)
|
| 134 |
name = get_name_by_id(PIPELINES, pipeline_id)
|
| 135 |
|
| 136 |
labels = requestResults(tokens_fomatted, pipeline)
|
|
|
|
| 36 |
{
|
| 37 |
'id': 1,
|
| 38 |
'name': 'Baseline',
|
| 39 |
+
'filename': "pipeline_ex1_s1.joblib"
|
| 40 |
},
|
| 41 |
{
|
| 42 |
'id': 2,
|
| 43 |
'name': 'Trained on a FeedForward NN',
|
| 44 |
+
'filename': "pipeline_ex1_s2.joblib"
|
| 45 |
},
|
| 46 |
{
|
| 47 |
'id': 3,
|
| 48 |
'name': 'Trained on a CRF',
|
| 49 |
+
'filename': "pipeline_ex1_s2.joblib"
|
| 50 |
},
|
| 51 |
{
|
| 52 |
'id': 4,
|
| 53 |
'name': 'Trained on a small dataset',
|
| 54 |
+
'filename': "pipeline_ex2_s3.joblib"
|
| 55 |
+
v },
|
| 56 |
{
|
| 57 |
'id': 5,
|
| 58 |
'name': 'Trained on a large dataset',
|
| 59 |
+
'filename': "pipeline_ex2_s2.joblib"
|
| 60 |
},
|
| 61 |
{
|
| 62 |
'id': 6,
|
| 63 |
'name': 'Embedded using TFIDF',
|
| 64 |
+
'filename': "pipeline_ex3_s2.joblib"
|
| 65 |
},
|
| 66 |
{
|
| 67 |
'id': 7,
|
| 68 |
'name': 'Embedded using GloVe',
|
| 69 |
+
'filename': "pipeline_ex3_s3.joblib"
|
| 70 |
},
|
| 71 |
{
|
| 72 |
'id': 8,
|
| 73 |
'name': 'Embedded using Bio2Vec',
|
| 74 |
+
'filename': "pipeline_ex3_s4.joblib"
|
| 75 |
},
|
| 76 |
|
| 77 |
]
|
|
|
|
| 79 |
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
| 80 |
|
| 81 |
def get_pipeline_by_id(pipelines, pipeline_id):
|
| 82 |
+
return next((p['filename'] for p in pipelines if p['id'] == pipeline_id), None)
|
| 83 |
|
| 84 |
def get_name_by_id(pipelines, pipeline_id):
|
| 85 |
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
|
|
|
| 130 |
tokens_fomatted = pd.Series([pd.Series(tokens)])
|
| 131 |
|
| 132 |
pipeline_id = int(request.form['pipeline_select'])
|
| 133 |
+
pipeline = load_pipeline_from_hub(get_pipeline_by_id(PIPELINES, pipeline_id))
|
| 134 |
name = get_name_by_id(PIPELINES, pipeline_id)
|
| 135 |
|
| 136 |
labels = requestResults(tokens_fomatted, pipeline)
|