File size: 13,168 Bytes
8f51ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python3
"""
EchoFlow Integrated Tool

This tool integrates EchoFlow into the main echo analysis system.
"""

from __future__ import annotations

from typing import Any, Dict, List, Optional, Type
from pathlib import Path
import tempfile
import shutil
import datetime
import os
import sys

import numpy as np
import cv2
import torch
from pydantic import BaseModel, Field, field_validator
from langchain_core.tools import BaseTool
from langchain_core.callbacks import (
    CallbackManagerForToolRun,
    AsyncCallbackManagerForToolRun,
)

# Import our fixed EchoFlow implementation
from .echoflow_final_working import EchoFlowFinal

# ----------------------------- Input schema -----------------------------

class EchoFlowGenerationInput(BaseModel):
    """Generate synthetic echo images and videos using EchoFlow."""

    views: List[str] = Field(
        default_factory=lambda: ["A4C", "PLAX", "PSAX"],
        description="Cardiac echo views to synthesize (e.g., A4C, PLAX, PSAX).",
    )
    ejection_fractions: List[float] = Field(
        default_factory=lambda: [0.35, 0.55, 0.70],
        description="Ejection fraction values (0.0 to 1.0) used to condition the generation.",
    )
    num_frames: int = Field(16, ge=1, le=64, description="Number of frames in generated videos.")
    timestep: float = Field(0.5, ge=0.0, le=1.0, description="Diffusion timestep for generation.")
    
    outdir: Optional[str] = Field(
        None,
        description="Root output dir. If omitted, a timestamped folder is created under the tool temp dir.",
    )
    save_features: bool = Field(True, description="Save generated features as numpy arrays.")
    save_metadata: bool = Field(True, description="Save generation metadata.")

    @field_validator("views")
    @classmethod
    def _nonempty_views(cls, v: List[str]) -> List[str]:
        if not v:
            raise ValueError("At least one view must be provided.")
        return v

    @field_validator("ejection_fractions")
    @classmethod
    def _valid_efs(cls, v: List[float]) -> List[float]:
        if not v:
            raise ValueError("At least one ejection fraction must be provided.")
        for x in v:
            if x < 0.0 or x > 1.0:
                raise ValueError(f"Ejection fraction {x} out of range [0.0, 1.0].")
        return v

# ----------------------------- Tool class -------------------------------

class EchoFlowGenerationTool(BaseTool):
    """EchoFlow generation tool integrated with the main echo analysis system."""

    name: str = "echoflow_generation"
    description: str = (
        "Generate synthetic echocardiography images and videos using EchoFlow. "
        "Creates realistic echo data for training, testing, and augmentation purposes. "
        "Supports multiple views (A4C, PLAX, PSAX) and ejection fraction conditioning."
    )
    args_schema: Type[BaseModel] = EchoFlowGenerationInput

    device: Optional[str] = "cuda"
    temp_dir: Path = Path("temp")
    echoflow_generator: Optional[EchoFlowFinal] = None

    def __init__(self, device: Optional[str] = None, temp_dir: Optional[str] = None):
        super().__init__()
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.temp_dir = Path(temp_dir or tempfile.mkdtemp())
        self.temp_dir.mkdir(parents=True, exist_ok=True)
        
        # Initialize EchoFlow generator
        try:
            self.echoflow_generator = EchoFlowFinal(device=self.device)
            if not self.echoflow_generator.load_config():
                print("⚠️  Could not load EchoFlow config, using defaults")
            if not self.echoflow_generator.load_models():
                raise RuntimeError("Failed to load EchoFlow models")
            print("βœ… EchoFlow generator initialized successfully")
        except Exception as e:
            print(f"❌ Failed to initialize EchoFlow generator: {e}")
            self.echoflow_generator = None

    # ----------------------------- helpers -----------------------------

    def _ensure_echoflow(self):
        if self.echoflow_generator is None:
            raise RuntimeError(
                "EchoFlow generator not initialized. Check model loading and dependencies."
            )

    @staticmethod
    def _ensure_dirs(root: Path) -> Dict[str, Path]:
        d = {
            "features": root / "features",
            "metadata": root / "metadata",
            "masks": root / "masks",
            "videos": root / "videos",
        }
        for p in d.values():
            p.mkdir(parents=True, exist_ok=True)
        return d

    @staticmethod
    def _save_numpy(path: Path, arr: np.ndarray) -> str:
        np.save(str(path), arr)
        return str(path)

    @staticmethod
    def _save_json(path: Path, data: Dict[str, Any]) -> str:
        import json
        with open(path, 'w') as f:
            json.dump(data, f, indent=2, default=str)
        return str(path)

    # ----------------------------- core run -----------------------------

    def _run(
        self,
        views: List[str],
        ejection_fractions: List[float],
        num_frames: int = 16,
        timestep: float = 0.5,
        outdir: Optional[str] = None,
        save_features: bool = True,
        save_metadata: bool = True,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> Dict[str, Any]:
        self._ensure_echoflow()

        stamp = datetime.datetime.utcnow().strftime("%Y%m%d_%H%M%S")
        root = Path(outdir) if outdir else (self.temp_dir / f"echoflow_generation_{stamp}")
        root.mkdir(parents=True, exist_ok=True)
        paths = self._ensure_dirs(root)

        run_meta = {
            "timestamp_utc": stamp,
            "device": self.device,
            "views": views,
            "ejection_fractions": ejection_fractions,
            "num_frames": num_frames,
            "timestep": timestep,
        }

        results: Dict[str, Any] = {
            "outdir": str(root), 
            "meta": run_meta, 
            "views": {},
            "success": True,
            "total_generations": 0,
            "successful_generations": 0
        }

        for view in views:
            view_rec: Dict[str, Any] = {
                "view": view,
                "ejection_fractions": {},
                "features_saved": [],
                "metadata_saved": [],
            }
            results["views"][view] = view_rec

            # Generate for each ejection fraction
            for ef in ejection_fractions:
                try:
                    print(f"🎬 Generating {view} view with EF={ef:.2f}")
                    
                    # Create dummy mask (in real implementation, this would be loaded)
                    dummy_mask = np.random.randint(0, 255, (400, 400), dtype=np.uint8)
                    
                    # Generate synthetic echo
                    result = self.echoflow_generator.generate_synthetic_echo(
                        mask=dummy_mask,
                        view_type=view,
                        ejection_fraction=ef,
                        num_frames=num_frames
                    )
                    
                    if result["success"]:
                        results["total_generations"] += 1
                        results["successful_generations"] += 1
                        
                        # Save features if requested
                        if save_features:
                            features_path = paths["features"] / f"{view}_EF{ef:.2f}_features.npy"
                            self._save_numpy(features_path, result["video_features"])
                            view_rec["features_saved"].append(str(features_path))
                        
                        # Save metadata if requested
                        if save_metadata:
                            metadata = {
                                "view": view,
                                "ejection_fraction": ef,
                                "num_frames": num_frames,
                                "timestep": timestep,
                                "video_features_shape": result["video_features"].shape,
                                "mask_processed_shape": result["mask_processed"].shape,
                                "timestamp": result["timestamp"],
                                "device": result["device"]
                            }
                            metadata_path = paths["metadata"] / f"{view}_EF{ef:.2f}_metadata.json"
                            self._save_json(metadata_path, metadata)
                            view_rec["metadata_saved"].append(str(metadata_path))
                        
                        # Save mask if requested
                        mask_path = paths["masks"] / f"{view}_EF{ef:.2f}_mask.npy"
                        self._save_numpy(mask_path, result["mask_processed"])
                        
                        view_rec["ejection_fractions"][f"EF_{ef:.2f}"] = {
                            "success": True,
                            "video_features_shape": result["video_features"].shape,
                            "features_path": str(features_path) if save_features else None,
                            "metadata_path": str(metadata_path) if save_metadata else None,
                            "mask_path": str(mask_path)
                        }
                        
                        print(f"βœ… {view} EF={ef:.2f} generated successfully")
                        
                    else:
                        results["total_generations"] += 1
                        view_rec["ejection_fractions"][f"EF_{ef:.2f}"] = {
                            "success": False,
                            "error": result.get("error", "Unknown error")
                        }
                        print(f"❌ {view} EF={ef:.2f} generation failed: {result.get('error', 'Unknown error')}")
                        
                except Exception as e:
                    results["total_generations"] += 1
                    view_rec["ejection_fractions"][f"EF_{ef:.2f}"] = {
                        "success": False,
                        "error": str(e)
                    }
                    print(f"❌ {view} EF={ef:.2f} generation error: {e}")

        # Calculate success rate
        if results["total_generations"] > 0:
            results["success_rate"] = results["successful_generations"] / results["total_generations"]
        else:
            results["success_rate"] = 0.0

        print(f"\nπŸ“Š Generation Summary:")
        print(f"   Total generations: {results['total_generations']}")
        print(f"   Successful: {results['successful_generations']}")
        print(f"   Success rate: {results['success_rate']:.2%}")

        return results

    async def _arun(  # pragma: no cover
        self,
        views: List[str],
        ejection_fractions: List[float],
        num_frames: int = 16,
        timestep: float = 0.5,
        outdir: Optional[str] = None,
        save_features: bool = True,
        save_metadata: bool = True,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> Dict[str, Any]:
        return self._run(
            views=views,
            ejection_fractions=ejection_fractions,
            num_frames=num_frames,
            timestep=timestep,
            outdir=outdir,
            save_features=save_features,
            save_metadata=save_metadata,
        )

# ----------------------------- Integration functions -----------------------------

def create_echoflow_tool(device: Optional[str] = None, temp_dir: Optional[str] = None) -> EchoFlowGenerationTool:
    """
    Create an EchoFlow generation tool.
    
    Args:
        device: Device to use ('cuda', 'cpu', or None for auto-detection)
        temp_dir: Temporary directory for outputs
        
    Returns:
        Initialized EchoFlowGenerationTool instance
    """
    return EchoFlowGenerationTool(device=device, temp_dir=temp_dir)

def test_echoflow_tool():
    """Test the EchoFlow tool."""
    print("πŸ§ͺ Testing EchoFlow Tool")
    print("=" * 40)
    
    try:
        # Create tool
        tool = create_echoflow_tool()
        
        # Test generation
        output_dir = Path(__file__).resolve().parents[2] / "temp" / "echoflow_test_output"
        result = tool.run({
            "views": ["A4C", "PLAX"],
            "ejection_fractions": [0.35, 0.65],
            "num_frames": 8,
            "timestep": 0.5,
            "outdir": str(output_dir),
            "save_features": True,
            "save_metadata": True
        })
        
        print(f"\nπŸ“Š Test Results:")
        print(f"   Success: {result['success']}")
        print(f"   Success rate: {result['success_rate']:.2%}")
        print(f"   Output directory: {result['outdir']}")
        
        return result
        
    except Exception as e:
        print(f"❌ EchoFlow tool test failed: {e}")
        import traceback
        traceback.print_exc()
        return None

if __name__ == "__main__":
    # Run tool test
    test_echoflow_tool()