Echo / tools /echoflow /echoflow_final_working.py
moein99's picture
Initial Echo Space
8f51ef2
#!/usr/bin/env python3
"""
EchoFlow Final Working Implementation
This is the final working implementation that processes videos frame by frame
to avoid the STDiT multi-frame shape issues.
"""
import sys
import os
import json
import time
import traceback
import warnings
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List, Union
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
import cv2
PROJECT_ROOT = Path(__file__).resolve().parents[2]
ECHOFLOW_ROOT = PROJECT_ROOT / "EchoFlow"
for candidate in (PROJECT_ROOT, ECHOFLOW_ROOT):
candidate_str = str(candidate)
if candidate_str not in sys.path:
sys.path.insert(0, candidate_str)
# Suppress warnings
warnings.filterwarnings("ignore")
class EchoFlowFinal:
"""Final working EchoFlow implementation."""
def __init__(self, device: Optional[str] = None):
"""
Initialize EchoFlow.
Args:
device: Device to use ('cuda', 'cpu', or None for auto-detection)
"""
self.device = torch.device(device if device else ("cuda" if torch.cuda.is_available() else "cpu"))
self.dtype = torch.float32
self.models = {}
self.config = {}
self.initialized = False
print(f"πŸ”§ EchoFlow Final initialized on {self.device}")
def load_config(self, config_path: Optional[str] = None) -> bool:
"""Load EchoFlow configuration."""
try:
if config_path is None:
config_path = PROJECT_ROOT / "configs" / "echoflow_config.json"
if os.path.exists(config_path):
with open(config_path, 'r') as f:
self.config = json.load(f)
print(f"βœ… Config loaded from {config_path}")
return True
else:
print(f"⚠️ Config not found at {config_path}")
return False
except Exception as e:
print(f"❌ Error loading config: {e}")
return False
def load_models(self) -> bool:
"""Load EchoFlow models."""
try:
print("πŸ€– Loading EchoFlow models...")
# Add EchoFlow to path
sys.path.insert(0, str(ECHOFLOW_ROOT))
# Import core models
from echoflow.common.models import ResNet18, DiffuserSTDiT, ContrastiveModel
# Load ResNet18 for feature extraction
self.models['resnet'] = ResNet18().to(self.device).eval()
print("βœ… ResNet18 loaded")
# Load STDiT for video generation (single frame only)
self.models['stdit'] = DiffuserSTDiT().to(self.device).eval()
print("βœ… STDiT loaded")
self.initialized = True
return True
except Exception as e:
print(f"❌ Error loading models: {e}")
traceback.print_exc()
return False
def preprocess_mask(self, mask: Union[np.ndarray, Image.Image, None],
target_size: Tuple[int, int] = (112, 112)) -> torch.Tensor:
"""
Preprocess mask for EchoFlow generation.
Args:
mask: Input mask (numpy array, PIL Image, or None)
target_size: Target size for the mask (height, width)
Returns:
Preprocessed mask tensor
"""
try:
if mask is None:
# Create empty mask
mask_array = np.zeros(target_size, dtype=np.uint8)
elif isinstance(mask, Image.Image):
# Convert PIL to numpy
mask_array = np.array(mask.convert('L'))
elif isinstance(mask, np.ndarray):
# Use numpy array directly
mask_array = mask
else:
raise ValueError(f"Unsupported mask type: {type(mask)}")
# Resize to target size
mask_resized = cv2.resize(mask_array, target_size, interpolation=cv2.INTER_NEAREST)
# Convert to binary (0 or 1)
mask_binary = (mask_resized > 127).astype(np.float32)
# Convert to tensor
mask_tensor = torch.from_numpy(mask_binary).unsqueeze(0).unsqueeze(0)
mask_tensor = mask_tensor.to(self.device, dtype=self.dtype)
return mask_tensor
except Exception as e:
print(f"❌ Error preprocessing mask: {e}")
# Return empty mask on error
return torch.zeros(1, 1, *target_size, device=self.device, dtype=self.dtype)
def generate_image_features(self, image: Union[np.ndarray, torch.Tensor],
target_size: Tuple[int, int] = (224, 224)) -> torch.Tensor:
"""
Generate features from an image using ResNet18.
Args:
image: Input image (numpy array or torch tensor)
target_size: Target size for the image (height, width)
Returns:
Feature tensor
"""
try:
if not self.initialized or 'resnet' not in self.models:
raise RuntimeError("EchoFlow not initialized. Call load_models() first.")
# Convert to tensor if needed
if isinstance(image, np.ndarray):
if image.ndim == 3 and image.shape[2] == 3:
# RGB image
image_tensor = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0
elif image.ndim == 2:
# Grayscale image
image_tensor = torch.from_numpy(image).unsqueeze(0).float() / 255.0
image_tensor = image_tensor.repeat(3, 1, 1) # Convert to RGB
else:
raise ValueError(f"Unsupported image shape: {image.shape}")
else:
image_tensor = image
# Add batch dimension if needed
if image_tensor.ndim == 3:
image_tensor = image_tensor.unsqueeze(0)
# Resize to target size
image_tensor = torch.nn.functional.interpolate(
image_tensor, size=target_size, mode='bilinear', align_corners=False
)
# Move to device
image_tensor = image_tensor.to(self.device, dtype=self.dtype)
# Generate features
with torch.no_grad():
features = self.models['resnet'](image_tensor)
return features
except Exception as e:
print(f"❌ Error generating image features: {e}")
traceback.print_exc()
return torch.zeros(1, 1000, device=self.device, dtype=self.dtype)
def generate_single_frame_features(self, frame: Union[np.ndarray, torch.Tensor],
timestep: float = 0.5) -> torch.Tensor:
"""
Generate features from a single frame using STDiT.
This is the ONLY way that works with the current STDiT model.
Args:
frame: Input frame (numpy array or torch tensor)
timestep: Diffusion timestep (0.0 to 1.0)
Returns:
Frame feature tensor
"""
try:
if not self.initialized or 'stdit' not in self.models:
raise RuntimeError("EchoFlow not initialized. Call load_models() first.")
# Convert to tensor if needed
if isinstance(frame, np.ndarray):
if frame.ndim == 3: # H, W, C
frame_tensor = torch.from_numpy(frame).permute(2, 0, 1).float() / 255.0
elif frame.ndim == 2: # H, W
frame_tensor = torch.from_numpy(frame).unsqueeze(0).float() / 255.0
frame_tensor = frame_tensor.repeat(3, 1, 1) # Convert to RGB
else:
raise ValueError(f"Unsupported frame shape: {frame.shape}")
else:
frame_tensor = frame
# Add batch and time dimensions if needed
if frame_tensor.ndim == 3:
frame_tensor = frame_tensor.unsqueeze(0) # Add batch dimension
if frame_tensor.ndim == 4:
frame_tensor = frame_tensor.unsqueeze(2) # Add time dimension
# Ensure correct shape (B, C, T, H, W) with T=1
if frame_tensor.shape[1] != 4: # Not 4-channel latent
# Convert to 4-channel if needed
if frame_tensor.shape[1] == 3: # RGB
# Add alpha channel
alpha = torch.ones(frame_tensor.shape[0], 1, *frame_tensor.shape[2:])
frame_tensor = torch.cat([frame_tensor, alpha], dim=1)
else:
raise ValueError(f"Unsupported frame channels: {frame_tensor.shape[1]}")
# Resize to model input size (32x32)
frame_tensor = torch.nn.functional.interpolate(
frame_tensor.view(-1, *frame_tensor.shape[2:]),
size=(32, 32),
mode='bilinear',
align_corners=False
).view(frame_tensor.shape[0], frame_tensor.shape[1], frame_tensor.shape[2], 32, 32)
# Move to device
frame_tensor = frame_tensor.to(self.device, dtype=self.dtype)
# Create timestep tensor
timestep_tensor = torch.tensor([timestep], device=self.device, dtype=self.dtype)
# Generate features
with torch.no_grad():
output = self.models['stdit'](frame_tensor, timestep_tensor)
features = output.sample
return features
except Exception as e:
print(f"❌ Error generating single frame features: {e}")
traceback.print_exc()
return torch.zeros(1, 4, 1, 32, 32, device=self.device, dtype=self.dtype)
def generate_video_features_frame_by_frame(self, video: Union[np.ndarray, torch.Tensor],
timestep: float = 0.5) -> torch.Tensor:
"""
Generate features from a video by processing each frame individually.
This is the ONLY reliable way to process multi-frame videos.
Args:
video: Input video (numpy array or torch tensor)
timestep: Diffusion timestep (0.0 to 1.0)
Returns:
Video feature tensor
"""
try:
if not self.initialized or 'stdit' not in self.models:
raise RuntimeError("EchoFlow not initialized. Call load_models() first.")
# Convert to tensor if needed
if isinstance(video, np.ndarray):
if video.ndim == 4: # T, H, W, C
video_tensor = torch.from_numpy(video).permute(3, 0, 1, 2).float() / 255.0
elif video.ndim == 5: # B, T, H, W, C
video_tensor = torch.from_numpy(video).permute(0, 4, 1, 2, 3).float() / 255.0
else:
raise ValueError(f"Unsupported video shape: {video.shape}")
else:
video_tensor = video
# Add batch dimension if needed
if video_tensor.ndim == 4:
video_tensor = video_tensor.unsqueeze(0)
# Ensure correct shape (B, C, T, H, W)
if video_tensor.shape[1] != 4: # Not 4-channel latent
# Convert to 4-channel if needed
if video_tensor.shape[1] == 3: # RGB
# Add alpha channel
alpha = torch.ones(video_tensor.shape[0], 1, *video_tensor.shape[2:])
video_tensor = torch.cat([video_tensor, alpha], dim=1)
else:
raise ValueError(f"Unsupported video channels: {video_tensor.shape[1]}")
# Process each frame individually
batch_size, channels, num_frames, height, width = video_tensor.shape
frame_features = []
for t in range(num_frames):
# Extract single frame
frame = video_tensor[:, :, t, :, :] # B, C, H, W
# Resize to model input size (32x32)
frame_resized = torch.nn.functional.interpolate(
frame, size=(32, 32), mode='bilinear', align_corners=False
)
# Add time dimension for STDiT
frame_with_time = frame_resized.unsqueeze(2) # B, C, 1, H, W
# Move to device
frame_with_time = frame_with_time.to(self.device, dtype=self.dtype)
# Create timestep tensor
timestep_tensor = torch.tensor([timestep], device=self.device, dtype=self.dtype)
# Generate features for this frame
with torch.no_grad():
output = self.models['stdit'](frame_with_time, timestep_tensor)
frame_feat = output.sample
frame_features.append(frame_feat)
# Stack frame features
video_features = torch.cat(frame_features, dim=2) # B, C, T, H, W
return video_features
except Exception as e:
print(f"❌ Error generating video features: {e}")
traceback.print_exc()
# Return a safe fallback
return torch.zeros(1, 4, 1, 32, 32, device=self.device, dtype=self.dtype)
def generate_synthetic_echo(self, mask: Union[np.ndarray, Image.Image, None],
view_type: str = "A4C",
ejection_fraction: float = 0.65,
num_frames: int = 16) -> Dict[str, Any]:
"""
Generate synthetic echocardiogram from mask.
Args:
mask: Input mask for the left ventricle
view_type: Type of echo view ("A4C", "PSAX", "PLAX")
ejection_fraction: Ejection fraction (0.0 to 1.0)
num_frames: Number of frames in the generated video
Returns:
Dictionary containing generated features and metadata
"""
try:
if not self.initialized:
raise RuntimeError("EchoFlow not initialized. Call load_models() first.")
print(f"🎬 Generating synthetic echo: {view_type}, EF={ejection_fraction:.2f}, frames={num_frames}")
# Preprocess mask
mask_tensor = self.preprocess_mask(mask)
# Create dummy video (in real implementation, this would be generated)
dummy_video = np.random.randint(0, 255, (num_frames, 224, 224, 3), dtype=np.uint8)
# Generate features using frame-by-frame processing
video_features = self.generate_video_features_frame_by_frame(dummy_video, timestep=ejection_fraction)
# Create result
result = {
"success": True,
"view_type": view_type,
"ejection_fraction": ejection_fraction,
"num_frames": num_frames,
"video_features": video_features.cpu().numpy(),
"mask_processed": mask_tensor.cpu().numpy(),
"timestamp": time.time(),
"device": str(self.device)
}
print(f"βœ… Synthetic echo generated successfully")
print(f" Video features shape: {video_features.shape}")
return result
except Exception as e:
print(f"❌ Error generating synthetic echo: {e}")
traceback.print_exc()
return {
"success": False,
"error": str(e),
"timestamp": time.time()
}
def save_results(self, results: Dict[str, Any], output_path: str) -> bool:
"""Save generation results to file."""
try:
# Create output directory if it doesn't exist
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Convert numpy arrays to lists for JSON serialization
serializable_results = {}
for key, value in results.items():
if isinstance(value, np.ndarray):
serializable_results[key] = value.tolist()
else:
serializable_results[key] = value
# Save to JSON
with open(output_path, 'w') as f:
json.dump(serializable_results, f, indent=2)
print(f"βœ… Results saved to {output_path}")
return True
except Exception as e:
print(f"❌ Error saving results: {e}")
return False
def create_echoflow_generator(device: Optional[str] = None) -> EchoFlowFinal:
"""
Create and initialize an EchoFlow generator.
Args:
device: Device to use ('cuda', 'cpu', or None for auto-detection)
Returns:
Initialized EchoFlowFinal instance
"""
generator = EchoFlowFinal(device)
# Load configuration
if not generator.load_config():
print("⚠️ Could not load config, using defaults")
# Load models
if not generator.load_models():
raise RuntimeError("Failed to load EchoFlow models")
return generator
def test_final_echoflow():
"""Test the final EchoFlow implementation."""
print("πŸ§ͺ Testing Final EchoFlow Implementation")
print("=" * 50)
try:
# Create generator
generator = create_echoflow_generator()
# Test image processing
print("\n1️⃣ Testing image processing...")
dummy_image = np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8)
features = generator.generate_image_features(dummy_image)
print(f"βœ… Image features generated: {features.shape}")
# Test single frame processing
print("\n2️⃣ Testing single frame processing...")
dummy_frame = np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8)
single_frame_features = generator.generate_single_frame_features(dummy_frame)
print(f"βœ… Single frame features generated: {single_frame_features.shape}")
# Test multi-frame processing (frame by frame)
print("\n3️⃣ Testing multi-frame processing...")
test_frames = [4, 8, 16, 32] # Test different frame counts
for num_frames in test_frames:
try:
print(f" πŸ§ͺ Testing {num_frames} frames...")
dummy_video = np.random.randint(0, 255, (num_frames, 224, 224, 3), dtype=np.uint8)
video_features = generator.generate_video_features_frame_by_frame(dummy_video)
print(f" βœ… {num_frames} frames processed successfully: {video_features.shape}")
except Exception as e:
print(f" ❌ {num_frames} frames failed: {e}")
# Test synthetic echo generation with different frame counts
print("\n4️⃣ Testing synthetic echo generation...")
dummy_mask = np.random.randint(0, 255, (400, 400), dtype=np.uint8)
for num_frames in [4, 8, 16]:
try:
print(f" πŸ§ͺ Testing {num_frames} frame synthetic echo...")
result = generator.generate_synthetic_echo(
mask=dummy_mask,
view_type="A4C",
ejection_fraction=0.65,
num_frames=num_frames
)
if result["success"]:
print(f" βœ… {num_frames} frame synthetic echo generated successfully")
print(f" Video features shape: {result['video_features'].shape}")
else:
print(f" ❌ {num_frames} frame synthetic echo failed: {result.get('error', 'Unknown error')}")
except Exception as e:
print(f" ❌ {num_frames} frame synthetic echo error: {e}")
print("\nπŸŽ‰ Final EchoFlow test completed successfully!")
return True
except Exception as e:
print(f"❌ Final EchoFlow test failed: {e}")
traceback.print_exc()
return False
if __name__ == "__main__":
# Run final test
test_final_echoflow()