Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| import cv2 | |
| import tempfile | |
| import os | |
| # Load models and configurations | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| def can_expand(source_width, source_height, target_width, target_height, alignment): | |
| """Checks if the image can be expanded based on the alignment.""" | |
| if alignment in ("Left", "Right") and source_width >= target_width: | |
| return False | |
| if alignment in ("Top", "Bottom") and source_height >= target_height: | |
| return False | |
| return True | |
| def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle"): | |
| source = image | |
| target_size = (width, height) | |
| overlap = overlap_width | |
| # Upscale if source is smaller than target in both dimensions | |
| if source.width < target_size[0] and source.height < target_size[1]: | |
| scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
| new_width = int(source.width * scale_factor) | |
| new_height = int(source.height * scale_factor) | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| if source.width > target_size[0] or source.height > target_size[1]: | |
| scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
| new_width = int(source.width * scale_factor) | |
| new_height = int(source.height * scale_factor) | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| if resize_option == "Full": | |
| resize_size = max(source.width, source.height) | |
| elif resize_option == "1/2": | |
| resize_size = max(source.width, source.height) // 2 | |
| elif resize_option == "1/3": | |
| resize_size = max(source.width, source.height) // 3 | |
| elif resize_option == "1/4": | |
| resize_size = max(source.width, source.height) // 4 | |
| else: # Custom | |
| resize_size = custom_resize_size | |
| aspect_ratio = source.height / source.width | |
| new_width = resize_size | |
| new_height = int(resize_size * aspect_ratio) | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment): | |
| alignment = "Middle" | |
| # Calculate margins based on alignment | |
| if alignment == "Middle": | |
| margin_x = (target_size[0] - source.width) // 2 | |
| margin_y = (target_size[1] - source.height) // 2 | |
| elif alignment == "Left": | |
| margin_x = 0 | |
| margin_y = (target_size[1] - source.height) // 2 | |
| elif alignment == "Right": | |
| margin_x = target_size[0] - source.width | |
| margin_y = (target_size[1] - source.height) // 2 | |
| elif alignment == "Top": | |
| margin_x = (target_size[0] - source.width) // 2 | |
| margin_y = 0 | |
| elif alignment == "Bottom": | |
| margin_x = (target_size[0] - source.width) // 2 | |
| margin_y = target_size[1] - source.height | |
| background = Image.new('RGB', target_size, (255, 255, 255)) | |
| background.paste(source, (margin_x, margin_y)) | |
| mask = Image.new('L', target_size, 255) | |
| mask_draw = ImageDraw.Draw(mask) | |
| # Adjust mask generation based on alignment | |
| if alignment == "Middle": | |
| mask_draw.rectangle([ | |
| (margin_x + overlap, margin_y + overlap), | |
| (margin_x + source.width - overlap, margin_y + source.height - overlap) | |
| ], fill=0) | |
| elif alignment == "Left": | |
| mask_draw.rectangle([ | |
| (margin_x, margin_y), | |
| (margin_x + source.width - overlap, margin_y + source.height) | |
| ], fill=0) | |
| elif alignment == "Right": | |
| mask_draw.rectangle([ | |
| (margin_x + overlap, margin_y), | |
| (margin_x + source.width, margin_y + source.height) | |
| ], fill=0) | |
| elif alignment == "Top": | |
| mask_draw.rectangle([ | |
| (margin_x, margin_y), | |
| (margin_x + source.width, margin_y + source.height - overlap) | |
| ], fill=0) | |
| elif alignment == "Bottom": | |
| mask_draw.rectangle([ | |
| (margin_x, margin_y + overlap), | |
| (margin_x + source.width, margin_y + source.height) | |
| ], fill=0) | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| final_prompt = f"{prompt_input} , high quality, 4k" | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(final_prompt, "cuda", True) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| num_inference_steps=num_inference_steps | |
| ): | |
| yield cnet_image, image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), mask) | |
| yield background, cnet_image | |
| def create_zoom_animation(previous_frame, next_frame, steps): | |
| # List to store all frames | |
| interpolated_frames = [] | |
| for i in range(steps): | |
| t = i / (steps - 1) # Normalized time between 0 and 1 | |
| # Compute zoom factor (from 1 to 2) | |
| z = 1 + t # Zoom factor increases from 1 to 2 | |
| if i < steps - 1: | |
| # Compute crop size | |
| crop_size = int(1024 / z) | |
| # Compute crop coordinates to center the crop | |
| x0 = (1024 - crop_size) // 2 | |
| y0 = (1024 - crop_size) // 2 | |
| x1 = x0 + crop_size | |
| y1 = y0 + crop_size | |
| # Crop the previous_frame | |
| cropped_prev = previous_frame.crop((x0, y0, x1, y1)) | |
| # Resize to 512x512 | |
| resized_frame = cropped_prev.resize((512, 512), Image.LANCZOS) | |
| interpolated_frames.append(resized_frame) | |
| else: | |
| # For the last frame, use the next_frame resized to 512x512 | |
| resized_frame = next_frame.resize((512, 512), Image.LANCZOS) | |
| return interpolated_frames | |
| def create_video_from_images(image_list, fps=24): | |
| if not image_list: | |
| return None | |
| with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file: | |
| video_path = temp_video_file.name | |
| frame = np.array(image_list[0]) | |
| height, width, layers = frame.shape | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| video = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) | |
| for image in image_list: | |
| video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
| video.release() | |
| return video_path | |
| def loop_outpainting(image, width=1024, height=1024, overlap_width=6, num_inference_steps=8, | |
| resize_option="custom", custom_resize_size=512, prompt_input=None, | |
| alignment="Middle", num_iterations=6, fps=24, num_interpolation_frames=18, | |
| progress=gr.Progress()): | |
| current_image = image | |
| if(current_image.width != 1024 or current_image.height != 1024): | |
| for first_result in infer(current_image, 1024, 1024, overlap_width, num_inference_steps, | |
| resize_option, 1024, prompt_input, alignment): | |
| pass | |
| current_image = first_result[1] | |
| image_list = [current_image] | |
| for _ in progress.tqdm(range(num_iterations), desc="Generating frames"): | |
| # Generate new image | |
| for step_result in infer(current_image, width, height, overlap_width, num_inference_steps, | |
| resize_option, custom_resize_size, prompt_input, alignment): | |
| pass # Process all steps | |
| new_image = step_result[1] # Get the final image from the last step | |
| image_list.append(new_image) | |
| # Use new image as input for next iteration | |
| current_image = new_image | |
| # Reverse the image list to create a zoom-in effect | |
| reverse_image_list = image_list[::-1] | |
| # Create interpolated frames | |
| final_frame_list = [] | |
| for i in range(len(reverse_image_list) - 1): | |
| larger_frame = reverse_image_list[i] | |
| smaller_frame = reverse_image_list[i + 1] | |
| interpolated_frames = create_zoom_animation(larger_frame, smaller_frame, num_interpolation_frames) | |
| if i == 0: | |
| # Include all frames for the first sequence | |
| final_frame_list.extend(interpolated_frames) | |
| else: | |
| # Exclude the first frame to avoid duplication | |
| final_frame_list.extend(interpolated_frames[1:]) | |
| # Create video from the final frame list | |
| video_path = create_video_from_images(final_frame_list, fps) | |
| return video_path | |
| loop_outpainting.zerogpu = True | |
| def clear_result(): | |
| """Clears the result ImageSlider.""" | |
| return gr.update(value=None) | |
| def preload_presets(target_ratio, ui_width, ui_height): | |
| """Updates the width and height sliders based on the selected aspect ratio.""" | |
| if target_ratio == "9:16": | |
| changed_width = 720 | |
| changed_height = 1280 | |
| return changed_width, changed_height, gr.update(open=False) | |
| elif target_ratio == "16:9": | |
| changed_width = 1280 | |
| changed_height = 720 | |
| return changed_width, changed_height, gr.update(open=False) | |
| elif target_ratio == "1:1": | |
| changed_width = 1024 | |
| changed_height = 1024 | |
| return changed_width, changed_height, gr.update(open=False) | |
| elif target_ratio == "Custom": | |
| return ui_width, ui_height, gr.update(open=True) | |
| def select_the_right_preset(user_width, user_height): | |
| if user_width == 720 and user_height == 1280: | |
| return "9:16" | |
| elif user_width == 1280 and user_height == 720: | |
| return "16:9" | |
| elif user_width == 1024 and user_height == 1024: | |
| return "1:1" | |
| else: | |
| return "Custom" | |
| def toggle_custom_resize_slider(resize_option): | |
| return gr.update(visible=(resize_option == "Custom")) | |
| css = """ | |
| .gradio-container { | |
| width: 1200px !important; | |
| } | |
| """ | |
| title = """<h1 align="center">Outpaint Video Zoom-In</h1>""" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(): | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Input Image" | |
| ) | |
| prompt_input = gr.Textbox(label="Prompt (Optional)", visible=True) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| run_button = gr.Button("Generate", visible=False) | |
| loop_button = gr.Button("Create outpainting video") | |
| with gr.Row(): | |
| target_ratio = gr.Radio( | |
| label="Expected Ratio", | |
| choices=["9:16", "16:9", "1:1", "Custom"], | |
| value="1:1", | |
| scale=2, | |
| visible=False | |
| ) | |
| alignment_dropdown = gr.Dropdown( | |
| choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
| value="Middle", | |
| label="Alignment", | |
| visible=False | |
| ) | |
| with gr.Accordion(label="Advanced settings", open=False, visible=False) as settings_panel: | |
| with gr.Column(): | |
| with gr.Row(): | |
| width_slider = gr.Slider( | |
| label="Width", | |
| minimum=720, | |
| maximum=1536, | |
| step=8, | |
| value=1024, | |
| ) | |
| height_slider = gr.Slider( | |
| label="Height", | |
| minimum=720, | |
| maximum=1536, | |
| step=8, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
| overlap_width = gr.Slider( | |
| label="Mask overlap width", | |
| minimum=1, | |
| maximum=50, | |
| value=1, | |
| step=1 | |
| ) | |
| with gr.Row(): | |
| resize_option = gr.Radio( | |
| label="Resize input image", | |
| choices=["Full", "1/2", "1/3", "1/4", "Custom"], | |
| value="Custom" | |
| ) | |
| custom_resize_size = gr.Slider( | |
| label="Custom resize size", | |
| minimum=64, | |
| maximum=1024, | |
| step=8, | |
| value=512, | |
| visible=False | |
| ) | |
| with gr.Row(): | |
| num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=6) | |
| fps = gr.Slider(label="fps", minimum=1, maximum=24, value=24) | |
| with gr.Row(): | |
| num_interpolation_frames = gr.Slider(label="Interpolation frames", minimum=0, maximum=10, step=1, value=18) | |
| with gr.Column(): | |
| result = ImageSlider( | |
| interactive=False, | |
| label="Generated Image", | |
| visible=False | |
| ) | |
| use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
| video_output = gr.Video(label="Outpainting Video") | |
| gr.Examples( | |
| examples=["hide.png", "disaster.png"], | |
| fn=loop_outpainting, | |
| inputs=input_image, | |
| outputs=video_output, | |
| cache_examples="lazy", | |
| ) | |
| def use_output_as_input(output_image): | |
| """Sets the generated output as the new input image.""" | |
| return gr.update(value=output_image[1]) | |
| use_as_input_button.click( | |
| fn=use_output_as_input, | |
| inputs=[result], | |
| outputs=[input_image] | |
| ) | |
| target_ratio.change( | |
| fn=preload_presets, | |
| inputs=[target_ratio, width_slider, height_slider], | |
| outputs=[width_slider, height_slider, settings_panel], | |
| queue=False | |
| ) | |
| width_slider.change( | |
| fn=select_the_right_preset, | |
| inputs=[width_slider, height_slider], | |
| outputs=[target_ratio], | |
| queue=False | |
| ) | |
| height_slider.change( | |
| fn=select_the_right_preset, | |
| inputs=[width_slider, height_slider], | |
| outputs=[target_ratio], | |
| queue=False | |
| ) | |
| resize_option.change( | |
| fn=toggle_custom_resize_slider, | |
| inputs=[resize_option], | |
| outputs=[custom_resize_size], | |
| queue=False | |
| ) | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
| resize_option, custom_resize_size, prompt_input, alignment_dropdown], | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ) | |
| prompt_input.submit( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
| resize_option, custom_resize_size, prompt_input, alignment_dropdown], | |
| outputs=result, | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| ) | |
| loop_button.click( | |
| fn=loop_outpainting, | |
| inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
| resize_option, custom_resize_size, prompt_input, alignment_dropdown, | |
| num_iterations, fps, num_interpolation_frames], | |
| outputs=video_output, | |
| ) | |
| demo.queue(max_size=12).launch(share=False, ssr_mode=False) |