Spaces:
Running
Running
Commit
·
e04da09
1
Parent(s):
e01d6d5
Initial Commit
Browse files- app.py +116 -2
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,7 +1,121 @@
|
|
| 1 |
from fastapi import FastAPI
|
|
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
-
@app.
|
| 6 |
def greet_json():
|
| 7 |
-
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
+
import os
|
| 3 |
|
| 4 |
app = FastAPI()
|
| 5 |
|
| 6 |
+
@app.post("/")
|
| 7 |
def greet_json():
|
| 8 |
+
return {"Hello": "World!"}
|
| 9 |
+
|
| 10 |
+
GOOGLESHEETS_CREDENTIALS = os.getenv("GOOGLESHEETS_CREDENTIALS")
|
| 11 |
+
|
| 12 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
| 13 |
+
# from langchain_groq import ChatGroq
|
| 14 |
+
# from pydantic import BaseModel, Field
|
| 15 |
+
# import pygsheets
|
| 16 |
+
# import json
|
| 17 |
+
# from langgraph.graph import StateGraph, END
|
| 18 |
+
# from typing import TypedDict, Annotated
|
| 19 |
+
# import operator
|
| 20 |
+
# from langchain_core.messages import SystemMessage, HumanMessage, AnyMessage
|
| 21 |
+
# from langchain_ollama import ChatOllama
|
| 22 |
+
# import groq
|
| 23 |
+
# from tqdm import tqdm
|
| 24 |
+
# from opik.integrations.langchain import OpikTracer
|
| 25 |
+
# from langgraph.pregel import RetryPolicy
|
| 26 |
+
|
| 27 |
+
# MODEL = "llama3-70b-8192" # "meta-llama/llama-4-scout-17b-16e-instruct" #
|
| 28 |
+
|
| 29 |
+
# class TransactionParser(BaseModel):
|
| 30 |
+
# """This Pydantic class is used to parse the transaction message."""
|
| 31 |
+
|
| 32 |
+
# amount: str = Field(description="The amount of the transaction in decimal format. If the transaction is a credit or a reversal, then include negative sign. DO not insert currency.", example="123.45")
|
| 33 |
+
# dr_or_cr: str = Field(description="Identify if the transaction was debit (spent) or credit (received). Strictly choose one of the values - Debit or Credit")
|
| 34 |
+
# receiver: str = Field(description="The recipient of the transaction. Identify the Merchant Name from the value.")
|
| 35 |
+
# category: str = Field(description="The category of the transaction. The category of the transaction is linked to the Merchant Name. Strictly choose from one the of values - Shopping,EMI,Education,Miscellaneous,Grocery,Utility,House Help,Travel,Transport")
|
| 36 |
+
# transaction_date: str = Field(description="The date of the transaction in yyyy-mm-dd format. If the year is not provided then use current year.")
|
| 37 |
+
# transaction_origin: str = Field(description="The origin of the transaction. Provide the card or account number as well.")
|
| 38 |
+
|
| 39 |
+
# class AgentState(TypedDict):
|
| 40 |
+
# messages: Annotated[list[AnyMessage], operator.add]
|
| 41 |
+
|
| 42 |
+
# class Agent:
|
| 43 |
+
# def __init__(self, model, system=""):
|
| 44 |
+
# self.system = system
|
| 45 |
+
# graph = StateGraph(AgentState)
|
| 46 |
+
# graph.add_node("classify_txn_type", self.classify_txn_type, retry=RetryPolicy(retry_on=[groq.BadRequestError], max_attempts=2))
|
| 47 |
+
# graph.add_node("parse_message", self.parse_message, retry=RetryPolicy(retry_on=[groq.BadRequestError], max_attempts=2))
|
| 48 |
+
# graph.add_node("write_message", self.write_message)
|
| 49 |
+
# graph.add_conditional_edges(
|
| 50 |
+
# "classify_txn_type",
|
| 51 |
+
# self.check_txn_and_decide,
|
| 52 |
+
# {True: "parse_message", False: END}
|
| 53 |
+
# )
|
| 54 |
+
# graph.add_edge("parse_message", "write_message")
|
| 55 |
+
# graph.add_edge("write_message", END)
|
| 56 |
+
# graph.set_entry_point("classify_txn_type")
|
| 57 |
+
# self.graph = graph.compile()
|
| 58 |
+
# self.model = model
|
| 59 |
+
|
| 60 |
+
# def classify_txn_type(self, state: AgentState) -> AgentState:
|
| 61 |
+
# messages = state["messages"]
|
| 62 |
+
# if self.system:
|
| 63 |
+
# messages = [SystemMessage(content=self.system)] + messages
|
| 64 |
+
|
| 65 |
+
# message = self.model.invoke(messages)
|
| 66 |
+
# return {"messages": [message]}
|
| 67 |
+
|
| 68 |
+
# def parse_message(self, state: AgentState) -> AgentState:
|
| 69 |
+
# message = state["messages"][0].content
|
| 70 |
+
# system = """
|
| 71 |
+
# You are a helpful assistant skilled at parsing transaction messages and providing structured responses.
|
| 72 |
+
# """
|
| 73 |
+
# human = "Categorize the transaction message and provide the output in a structed format: {topic}"
|
| 74 |
+
|
| 75 |
+
# prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
|
| 76 |
+
# chain = prompt | model.with_structured_output(TransactionParser)
|
| 77 |
+
# result = chain.invoke({"topic": message})
|
| 78 |
+
|
| 79 |
+
# return {"messages": [result]}
|
| 80 |
+
|
| 81 |
+
# def write_message(self, state: AgentState) -> AgentState:
|
| 82 |
+
# result = state["messages"][-1]
|
| 83 |
+
# client = pygsheets.authorize(service_account_file="serviceaccount.json")
|
| 84 |
+
# worksheet = client.open_by_url("https://docs.google.com/spreadsheets/d/1t4bOM4fULdaVsjDDnqEG1g8Zey6M00UuFhTZC03_4xo")
|
| 85 |
+
# wk = worksheet[0]
|
| 86 |
+
# # Get number of rows in the worksheet
|
| 87 |
+
# df = wk.get_as_df(start='A1', end='G999')
|
| 88 |
+
# nrows = df.shape[0]
|
| 89 |
+
# wk.update_value(f'A{nrows+2}', result.amount)
|
| 90 |
+
# wk.update_value(f'B{nrows+2}', result.dr_or_cr)
|
| 91 |
+
# wk.update_value(f'C{nrows+2}', result.receiver)
|
| 92 |
+
# wk.update_value(f'D{nrows+2}', result.category)
|
| 93 |
+
# wk.update_value(f'E{nrows+2}', result.transaction_date)
|
| 94 |
+
# wk.update_value(f'F{nrows+2}', result.transaction_origin)
|
| 95 |
+
# wk.update_value(f'G{nrows+2}', state["messages"][0].content)
|
| 96 |
+
# return {"messages": ["Transaction Completed"]}
|
| 97 |
+
|
| 98 |
+
# def check_txn_and_decide(self, state: AgentState):
|
| 99 |
+
# try:
|
| 100 |
+
# result = json.loads(state['messages'][-1].content)['classification']
|
| 101 |
+
# except json.JSONDecodeError:
|
| 102 |
+
# result = state['messages'][-1].content.strip()
|
| 103 |
+
|
| 104 |
+
# return result == "Transaction"
|
| 105 |
+
|
| 106 |
+
# prompt = """You are a smart assistant adept at classifying different messages. \
|
| 107 |
+
# You will be penalized heavily for incorrect classification. \
|
| 108 |
+
# Your task is to classify the message into one of the following categories: \
|
| 109 |
+
# Transaction, OTP, Promotional, Scheduled. \
|
| 110 |
+
# Output the classification in a structured format like below. \
|
| 111 |
+
# {"classification": "OTP"} \
|
| 112 |
+
# """
|
| 113 |
+
|
| 114 |
+
# model = ChatGroq(temperature=1, groq_api_key=GROQ_API_KEY, model_name=MODEL)
|
| 115 |
+
# # model = ChatOllama(model="gemma3:4b", temperature=1, callback=OpikTracer())
|
| 116 |
+
|
| 117 |
+
# transaction_bot = Agent(model, system=prompt)
|
| 118 |
+
|
| 119 |
+
# for message in tqdm(messages):
|
| 120 |
+
# message = [HumanMessage(content=message)]
|
| 121 |
+
# result = transaction_bot.graph.invoke({"messages": message}, config={"callbacks" : [OpikTracer(graph=transaction_bot.graph.get_graph(xray=True))]})
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn[standard]
|
|
|
|
| 1 |
+
os
|
| 2 |
fastapi
|
| 3 |
uvicorn[standard]
|