File size: 18,907 Bytes
774cc79
a70dcb2
774cc79
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3292f
a5dbfe3
 
a70dcb2
 
 
 
 
 
 
 
 
7d093ef
c225b36
 
a5dbfe3
 
 
 
 
 
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d093ef
 
 
 
 
 
 
 
 
 
cc3292f
 
7d093ef
 
 
cc3292f
 
7d093ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c225b36
 
 
a5dbfe3
c225b36
cc3292f
 
c225b36
cc3292f
 
 
 
 
 
 
 
 
 
 
 
 
c225b36
cc3292f
c225b36
 
 
 
cc3292f
 
c225b36
cc3292f
 
 
 
 
 
 
 
 
 
 
c225b36
cc3292f
 
87a611c
 
cc3292f
c225b36
 
87a611c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dbfe3
87a611c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dbfe3
87a611c
 
 
 
 
 
 
 
 
 
 
 
 
 
f64b8d2
bb8e689
774cc79
a70dcb2
 
 
 
 
 
 
 
 
0e63823
 
 
 
 
 
 
 
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a611c
 
 
 
 
 
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e52e69
 
cc3292f
a70dcb2
 
7fba820
c225b36
3f5c665
2cd6943
 
3f5c665
 
09fc9cd
3f5c665
 
a70dcb2
3f5c665
 
c225b36
3f5c665
 
 
 
 
 
 
bb8e689
 
2cd6943
3f5c665
 
 
 
 
 
4b8938e
3cf9faf
7fba820
 
 
 
a706269
51cd317
7d093ef
 
a5dbfe3
7d093ef
 
 
 
 
c225b36
 
 
cc3292f
c225b36
 
 
 
 
 
cc3292f
c225b36
 
 
 
3cf9faf
 
 
bb8e689
 
 
 
 
 
a70dcb2
87a611c
a5dbfe3
 
87a611c
 
a5dbfe3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List

import torch
import os
import io
import warnings
import requests
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
import pillow_heif  # HEIC ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์šฉ (์•„์ดํฐ ์ดฌ์˜ ์‚ฌ์ง„ ํฌ๋งท)
from urllib.parse import urlparse

# SSL ๊ฒฝ๊ณ  ์–ต์ œ
warnings.filterwarnings("ignore", message=".*OpenSSL.*")
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")

# requests ์„ธ์…˜ ์„ค์ •
session = requests.Session()
session.verify = False  # SSL ๊ฒ€์ฆ ๋น„ํ™œ์„ฑํ™” (๊ฐœ๋ฐœ ํ™˜๊ฒฝ์šฉ)

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder


# ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜
def preprocess_image(image):
    # HEIC ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # HEIC ์ด๋ฏธ์ง€๋ฅผ JPEG๋กœ ๋ณ€ํ™˜
    try:
        output = io.BytesIO()
        image.convert("RGB").save(output, format="JPEG", quality=95)
        output.seek(0)
        image = Image.open(output)
    except Exception as e:
        print(f"Error converting image: {e}")
        # ๋ณ€ํ™˜ ์‹คํŒจ ์‹œ ์›๋ณธ ์ด๋ฏธ์ง€ ์‚ฌ์šฉ
        image = image.convert("RGB")

    # ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ฐ€์ ธ์˜ค๊ธฐ
    width, height = image.size
    
    # 3:4 ๋น„์œจ๋กœ ์ค‘์•™ ์ž๋ฅด๊ธฐ
    target_width = int(min(width, height * (3 / 4)))
    target_height = int(min(height, width * (4 / 3)))
    left = (width - target_width) / 2
    top = (height - target_height) / 2
    right = (width + target_width) / 2
    bottom = (height + target_height) / 2
    
    # ์ด๋ฏธ์ง€ ์ž๋ฅด๊ธฐ
    cropped_img = image.crop((left, top, right, bottom))
    
    # 768x1024๋กœ ๋ฆฌ์‚ฌ์ด์ง•
    resized_img = cropped_img.resize((768, 1024), resample=Image.Resampling.LANCZOS)
    
    return resized_img


# URL์—์„œ ์ด๋ฏธ์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ ํ•จ์ˆ˜
def load_image_from_url(url):
    try:
        response = session.get(url, stream=True, timeout=10)
        response.raise_for_status()  # HTTP ์˜ค๋ฅ˜ ํ™•์ธ
        
        # ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ
        img = Image.open(response.raw).convert("RGB")
        
        # JPEG๋กœ ๋ณ€ํ™˜
        output = io.BytesIO()
        img.save(output, format="JPEG", quality=95)
        output.seek(0)
        
        # ๋ณ€ํ™˜๋œ JPEG ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜
        jpeg_img = Image.open(output)
        return jpeg_img
        
    except requests.exceptions.RequestException as e:
        print(f"Error downloading image from URL: {e}")
        return None
    except Exception as e:
        print(f"Error processing image from URL: {e}")
        return None
    

#URL ์ž…๋ ฅ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜
def process_url_image(url):
    if not url or not url.strip():
        return None
    
    # URL ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ
    try:
        result = urlparse(url)
        if not all([result.scheme, result.netloc]):
            print("Invalid URL format")
            return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None
    
    img = load_image_from_url(url)
    if img is None:
        print("Failed to load image from URL")
        return None
        
    return preprocess_image(img)


# Hugging Face LFS OID๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ densepose ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
def download_densepose_model():
    """
    Hugging Face LFS OID๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ densepose ๋ชจ๋ธ์„ ๋‹ค์šด๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
    OID: b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91
    """
    model_path = './ckpt/densepose/model_final_162be9.pkl'
    
    # ๋ชจ๋ธ ํŒŒ์ผ์ด ์ด๋ฏธ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ
    if os.path.exists(model_path):
        print(f"DensePose model already exists at {model_path}")
        return model_path
    
    # ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
    os.makedirs('./ckpt/densepose', exist_ok=True)
    
    # Hugging Face LFS OID๋ฅผ ์‚ฌ์šฉํ•œ ๋‹ค์šด๋กœ๋“œ URL
    oid = "b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91"
    download_url = f"https://huggingface.co/datasets/hf-internal-testing/fixtures/resolve/{oid}/model_final_162be9.pkl"
    
    try:
        print(f"Downloading DensePose model from {download_url}")
        response = session.get(download_url, stream=True, timeout=300)
        response.raise_for_status()
        
        with open(model_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        print(f"DensePose model downloaded successfully to {model_path}")
        return model_path
        
    except Exception as e:
        print(f"Error downloading DensePose model: {e}")
        # ๋Œ€์ฒด URL ์‹œ๋„
        fallback_url = "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl"
        try:
            print(f"Trying fallback URL: {fallback_url}")
            response = session.get(fallback_url, stream=True, timeout=300)
            response.raise_for_status()
            
            with open(model_path, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
            
            print(f"DensePose model downloaded successfully from fallback URL to {model_path}")
            return model_path
            
        except Exception as e2:
            print(f"Error downloading from fallback URL: {e2}")
            return None


@spaces.GPU
def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed, is_checked_crop):
    device = "cuda"
    
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img= garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")    
    
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))


    if is_checked:
        keypoints = openpose_model(human_img.resize((384,512)))
        model_parse, _ = parsing_model(human_img.resize((384,512)))
        mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
        mask = mask.resize((768,1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
        # mask = transforms.ToTensor()(mask)
        # mask = mask.unsqueeze(0)
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)


    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
     
    

    # DensePose ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ๋ฐ ๊ฒฝ๋กœ ์„ค์ •
    densepose_model_path = download_densepose_model()
    if densepose_model_path is None:
        print("Failed to download DensePose model, using default path")
        densepose_model_path = './ckpt/densepose/model_final_162be9.pkl'
    
    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', densepose_model_path, 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    # verbosity = getattr(args, "verbosity", None)
    pose_img = args.func(args,human_img_arg)    
    pose_img = pose_img[:,:,::-1]    
    pose_img = Image.fromarray(pose_img).resize((768,1024))
    
    with torch.no_grad():
        # Extract the images
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )
                                    
                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )



                    pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                    garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device,torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength = 1.0,
                        pose_img = pose_img.to(device,torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                        cloth = garm_tensor.to(device,torch.float16),
                        mask_image=mask,
                        image=human_img, 
                        height=1024,
                        width=768,
                        ip_adapter_image = garm_img.resize((768,1024)),
                        guidance_scale=2.0,
                    )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)        
        human_img_orig.paste(out_img, (int(left), int(top)))    
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray
    # return images[0], mask_gray

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

human_ex_list = []
for ex_human in human_list_path:
    ex_dict= {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)

##default human


image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    gr.Markdown("## DXCO : GENAI-VTON")
    gr.Markdown("์ž„์„ฑ๋‚จ, ์œค์ง€์˜, ๊น€์ค€๊ธฐ based on IDM-VTON")
    gr.Markdown("์ด๋ฏธ์ง€๋Š” 3:4๋น„์œจ(384x512 ๋˜๋Š” 768x1024)๋กœ ์˜ฌ๋ ค์ฃผ์„ธ์š”")
    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='๋Œ€์ƒ ์ด๋ฏธ์ง€', interactive=True)
            img_url_input = gr.Textbox(label="๋Œ€์ƒ ์ด๋ฏธ์ง€ URL", placeholder="์˜ˆ) https://example.com/human_image.jpg")
            with gr.Row():
                with gr.Row():
                    is_checked = gr.Checkbox(label="Yes", info="์ž๋™ ๋งˆ์Šคํ‚น",value=True)
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=8,
                examples=human_ex_list
            )

        with gr.Column():
            garm_img = gr.Image(label="์˜์ƒ ์ด๋ฏธ์ง€", sources='upload', type="pil")
            garm_url_input = gr.Textbox(label="์˜์ƒ ์ด๋ฏธ์ง€ URL", placeholder="์˜ˆ) https://example.com/garment.jpg")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
    with gr.Row():
        try_button = gr.Button(value="Try-on")
    with gr.Row():
        with gr.Column():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
        with gr.Column():
            # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
        
    
        # with gr.Accordion(label="Advanced Settings", open=False):
        #     with gr.Row():
        #         denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
        #         seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)

    # is_checked = gr.Number(value=True)

    # ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์‹œ ์ „์ฒ˜๋ฆฌ
    imgs.change(
        fn=preprocess_image,
        inputs=imgs,
        outputs=imgs,  # ์ „์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ImageEditor์— ๋‹ค์‹œ ํ‘œ์‹œ
    )


    # ๋Œ€์ƒ ์ด๋ฏธ์ง€: URL ์ž…๋ ฅ ์ฒ˜๋ฆฌ
    img_url_input.change(
        fn=lambda url: process_url_image(url),
        inputs=img_url_input,
        outputs=imgs,
    )

    # ์˜์ƒ ์ด๋ฏธ์ง€: URL ์ž…๋ ฅ ์ฒ˜๋ฆฌ
    garm_url_input.change(
        fn=lambda url: process_url_image(url),
        inputs=garm_url_input,
        outputs=garm_img,
    )

    is_checked_crop = True
    denoise_steps = 30
    seed = 42
    try_button.click(
        fn=lambda *args: start_tryon(*args, is_checked_crop=is_checked_crop, denoise_steps=denoise_steps, seed=seed),
        inputs=[imgs, garm_img, prompt, is_checked],
        outputs=[image_out, masked_img],
        api_name='tryon'
    )

# ์•ฑ ์‹œ์ž‘ ์‹œ DensePose ๋ชจ๋ธ ๋ฏธ๋ฆฌ ๋‹ค์šด๋กœ๋“œ
print("Initializing DensePose model...")
try:
    download_densepose_model()
    print("DensePose model initialization completed.")
except Exception as e:
    print(f"Warning: Could not download DensePose model: {e}")
    print("The model will be downloaded when needed during inference.")

# ์•ฑ ์‹คํ–‰
if __name__ == "__main__":
    try:
        print("Starting GENAI-VTON application...")
        image_blocks.launch(server_name="0.0.0.0", server_port=7860, share=False)
    except Exception as e:
        print(f"Error starting the application: {e}")
        print("Please check if all required dependencies are installed.")