File size: 28,076 Bytes
774cc79
a70dcb2
774cc79
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3292f
a5dbfe3
 
a70dcb2
 
 
 
 
 
 
 
 
7d093ef
c225b36
 
a5dbfe3
 
 
 
 
 
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d093ef
 
 
 
 
 
 
e40b007
7d093ef
 
cc3292f
 
7d093ef
 
 
cc3292f
 
7d093ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c225b36
 
 
a5dbfe3
c225b36
cc3292f
 
c225b36
cc3292f
 
 
 
 
 
 
 
 
 
 
 
 
c225b36
cc3292f
c225b36
 
 
cc3292f
93412b6
cc3292f
c225b36
cc3292f
 
 
 
 
 
 
 
 
 
93412b6
c225b36
cc3292f
 
87a611c
93412b6
cc3292f
c225b36
93412b6
 
 
 
 
 
 
 
 
 
 
c225b36
e40b007
 
87a611c
e40b007
 
87a611c
e40b007
87a611c
e40b007
87a611c
e40b007
 
87a611c
 
e40b007
 
 
87a611c
e40b007
 
 
 
 
 
 
f40d1d0
 
 
87a611c
e40b007
 
87a611c
08b2d47
e40b007
08b2d47
 
e40b007
 
87a611c
e40b007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a611c
f64b8d2
bb8e689
774cc79
a70dcb2
 
 
 
 
 
 
 
 
0e63823
 
 
 
 
 
 
 
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a611c
f264da1
 
 
 
 
 
 
 
 
87a611c
 
a70dcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93412b6
 
a70dcb2
 
 
 
 
 
3a20643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7541733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a20643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e52e69
ec3f4fb
cc3292f
a70dcb2
 
3a20643
c225b36
3f5c665
2cd6943
 
3f5c665
 
09fc9cd
93412b6
3f5c665
a70dcb2
3f5c665
 
c225b36
3f5c665
 
 
 
 
 
 
bb8e689
 
2cd6943
3f5c665
7541733
3f5c665
7541733
4b8938e
3cf9faf
7fba820
 
 
 
a706269
51cd317
7d093ef
 
6f12b4e
 
 
 
 
7d093ef
c225b36
 
 
cc3292f
c225b36
 
 
 
 
 
cc3292f
c225b36
 
 
 
3cf9faf
 
 
bb8e689
 
 
 
 
 
a70dcb2
6614b04
a5dbfe3
 
e40b007
 
a5dbfe3
e40b007
 
a5dbfe3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List

import torch
import os
import io
import warnings
import requests
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
import pillow_heif  # HEIC ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์šฉ (์•„์ดํฐ ์ดฌ์˜ ์‚ฌ์ง„ ํฌ๋งท)
from urllib.parse import urlparse

# SSL ๊ฒฝ๊ณ  ์–ต์ œ
warnings.filterwarnings("ignore", message=".*OpenSSL.*")
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")

# requests ์„ธ์…˜ ์„ค์ •
session = requests.Session()
session.verify = False  # SSL ๊ฒ€์ฆ ๋น„ํ™œ์„ฑํ™” (๊ฐœ๋ฐœ ํ™˜๊ฒฝ์šฉ)

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder


# ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜
def preprocess_image(image):
    # HEIC ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # HEIC ์ด๋ฏธ์ง€๋ฅผ JPEG๋กœ ๋ณ€ํ™˜ - ์ด๊ฑฐ ์•ˆ ๋จนํžˆ๋Š” ๊ฑฐ ๊ฐ™์€๋ฐ.... 
    try:
        output = io.BytesIO()
        image.convert("RGB").save(output, format="JPEG", quality=95)
        output.seek(0)
        image = Image.open(output)
    except Exception as e:
        print(f"Error converting image: {e}")
        # ๋ณ€ํ™˜ ์‹คํŒจ ์‹œ ์›๋ณธ ์ด๋ฏธ์ง€ ์‚ฌ์šฉ
        image = image.convert("RGB")

    # ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ฐ€์ ธ์˜ค๊ธฐ
    width, height = image.size
    
    # 3:4 ๋น„์œจ๋กœ ์ค‘์•™ ์ž๋ฅด๊ธฐ
    target_width = int(min(width, height * (3 / 4)))
    target_height = int(min(height, width * (4 / 3)))
    left = (width - target_width) / 2
    top = (height - target_height) / 2
    right = (width + target_width) / 2
    bottom = (height + target_height) / 2
    
    # ์ด๋ฏธ์ง€ ์ž๋ฅด๊ธฐ
    cropped_img = image.crop((left, top, right, bottom))
    
    # 768x1024๋กœ ๋ฆฌ์‚ฌ์ด์ง•
    resized_img = cropped_img.resize((768, 1024), resample=Image.Resampling.LANCZOS)
    
    return resized_img


# URL์—์„œ ์ด๋ฏธ์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ ํ•จ์ˆ˜
def load_image_from_url(url):
    try:
        response = session.get(url, stream=True, timeout=10)
        response.raise_for_status()  # HTTP ์˜ค๋ฅ˜ ํ™•์ธ
        
        # ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ
        img = Image.open(response.raw).convert("RGB")
        
        # JPEG๋กœ ๋ณ€ํ™˜
        output = io.BytesIO()
        img.save(output, format="JPEG", quality=95)
        output.seek(0)
        
        # ๋ณ€ํ™˜๋œ JPEG ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜
        jpeg_img = Image.open(output)
        return jpeg_img
        
    except requests.exceptions.RequestException as e:
        print(f"Error downloading image from URL: {e}")
        return None
    except Exception as e:
        print(f"Error processing image from URL: {e}")
        return None
    

def process_url_image(url):
    """Process image from URL and return PIL Image"""
    if not url or not url.strip():
        return None
    
    # URL ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ
    try:
        result = urlparse(url)
        if not all([result.scheme, result.netloc]):
            print("Invalid URL format")
            return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None

    img = load_image_from_url(url)
    if img is None:
        print("Failed to load image from URL")
        return None
    
    return preprocess_image(img)

def load_example_for_editor(image_path):
    """Load example image for ImageEditor component"""
    if image_path is None:
        return None
    
    # ImageEditor๋Š” ํŠน์ • ํ˜•์‹์„ ๊ธฐ๋Œ€ํ•˜๋ฏ€๋กœ ๋”•์…”๋„ˆ๋ฆฌ ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜
    return {
        "background": image_path,
        "layers": None,
        "composite": None
    }

def download_model_file(model_path, urls):
    """Download model file from multiple URLs if it doesn't exist"""
    if os.path.exists(model_path):
        print(f"Model file already exists: {model_path}")
        return True
    
    os.makedirs(os.path.dirname(model_path), exist_ok=True)
    
    for url in urls:
        try:
            print(f"Downloading from: {url}")
            response = requests.get(url, stream=True)
            response.raise_for_status()
            
            total_size = int(response.headers.get('content-length', 0))
            block_size = 8192
            
            with open(model_path, 'wb') as f:
                downloaded = 0
                for chunk in response.iter_content(chunk_size=block_size):
                    if chunk:
                        f.write(chunk)
                        downloaded += len(chunk)
                        if total_size > 0:
                            percent = (downloaded / total_size) * 100
                            if(percent % 10 == 0):
                                print(f"\rDownload progress: {percent:.1f}%", end='', flush=True)                            
                            
            
            print(f"\nSuccessfully downloaded: {model_path}")
            return True
            
        except Exception as e:
            print(f"Failed to download from {url}: {e}")
            continue
    
    print(f"Failed to download model file from all URLs: {model_path}")
    return False

def download_densepose_model():
    """Download DensePose model file"""
    model_path = "ckpt/densepose/model_final_162be9.pkl"
    urls = [
        "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl",
        "https://github.com/facebookresearch/densepose/releases/download/v1.0/model_final_162be9.pkl"
    ]
    return download_model_file(model_path, urls)

def download_openpose_model():
    """Download OpenPose model file"""
    model_path = "ckpt/openpose/ckpts/body_pose_model.pth"
    urls = [
        "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth"
    ]
    return download_model_file(model_path, urls)

def download_humanparsing_models():
    """Download Human Parsing model files"""
    base_url = "https://huggingface.co/Longcat2957/humanparsing-onnx/resolve/main"
    
    models = [
        ("ckpt/humanparsing/parsing_atr.onnx", f"{base_url}/parsing_atr.onnx"),
        ("ckpt/humanparsing/parsing_lip.onnx", f"{base_url}/parsing_lip.onnx")
    ]
    
    success = True
    for model_path, url in models:
        if os.path.exists(model_path):
            print(f"Human parsing model already exists: {model_path}")
            continue
            
        print(f"Downloading {model_path} from {url}")
        if download_model_file(model_path, [url]):
            print(f"Successfully downloaded: {model_path}")
        else:
            print(f"Failed to download: {model_path}")
            success = False
    
    return success

def download_all_models():
    """Download all required model files"""
    print("Checking and downloading required model files...")
    
    # Download DensePose model
    print("\n=== Downloading DensePose model ===")
    densepose_success = download_densepose_model()
    
    # Download OpenPose model
    print("\n=== Downloading OpenPose model ===")
    openpose_success = download_openpose_model()
    
    # Download Human Parsing models
    print("\n=== Downloading Human Parsing models ===")
    parsing_success = download_humanparsing_models()
    
    return densepose_success and openpose_success and parsing_success

@spaces.GPU
def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed, is_checked_crop):
    device = "cuda"
    
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img= garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")    
    
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))


    if is_checked:
        keypoints = openpose_model(human_img.resize((384,512)))
        model_parse, _ = parsing_model(human_img.resize((384,512)))
        mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
        mask = mask.resize((768,1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
        # mask = transforms.ToTensor()(mask)
        # mask = mask.unsqueeze(0)
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)


    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
     
    

    # DensePose ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ๋ฐ ๊ฒฝ๋กœ ์„ค์ •
    densepose_model_path = './ckpt/densepose/model_final_162be9.pkl'
    
    # ๋ชจ๋ธ ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๋‹ค์šด๋กœ๋“œ ์‹œ๋„
    if not os.path.exists(densepose_model_path):
        print("DensePose model not found, attempting to download...")
        download_success = download_densepose_model()
        if not download_success:
            print("Failed to download DensePose model")
            return None, None
    
    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', densepose_model_path, 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    # verbosity = getattr(args, "verbosity", None)
    pose_img = args.func(args,human_img_arg)    
    pose_img = pose_img[:,:,::-1]    
    pose_img = Image.fromarray(pose_img).resize((768,1024))
    
    with torch.no_grad():
        # Extract the images
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )
                                    
                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )



                    pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                    garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device,torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength = 1.0,
                        pose_img = pose_img.to(device,torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                        cloth = garm_tensor.to(device,torch.float16),
                        mask_image=mask,
                        image=human_img, 
                        height=1024,
                        width=768,
                        ip_adapter_image = garm_img.resize((768,1024)),
                        guidance_scale=2.0,
                    )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)        
        human_img_orig.paste(out_img, (int(left), int(top)))    
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray
    # return images[0], mask_gray

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

# human_ex_list๋ฅผ ๋‹จ์ˆœํ•œ ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ๋กœ ๋ณ€๊ฒฝ (๊ทธ๋ฆฌ๋“œ ํ‘œ์‹œ๋ฅผ ์œ„ํ•ด)
human_ex_list = human_list_path

##default human


image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    # CSS๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ImageEditor์˜ canvas ํฌ๊ธฐ๋ฅผ ๊ณ ์ •ํ•˜์—ฌ ๋ธŒ๋Ÿฌ์‹œ ํฌ์ธํ„ฐ ์œ„์น˜ ์ •๋ ฌ (PC ๋ฐ ๋ชจ๋ฐ”์ผ ๋Œ€์‘)
    gr.HTML("""
    <style>
        /* PC ๋ฐ ๋ชจ๋ฐ”์ผ ๊ณตํ†ต: ImageEditor ์ปจํ…Œ์ด๋„ˆ */
        #image-editor-fixed {
            position: relative;
            display: inline-block;
        }
        
        /* PC: ๊ณ ์ • ํฌ๊ธฐ (384x512) */
        @media (min-width: 768px) {
            #image-editor-fixed canvas {
                width: 384px !important;
                height: 512px !important;
                max-width: 384px !important;
                max-height: 512px !important;
                object-fit: contain !important;
            }
            #image-editor-fixed > div,
            #image-editor-fixed .image-editor-container,
            #image-editor-fixed .image-editor-wrapper,
            #image-editor-fixed [class*="editor"],
            #image-editor-fixed [class*="canvas"] {
                width: 384px !important;
                height: 512px !important;
                max-width: 384px !important;
                max-height: 512px !important;
            }
            #image-editor-fixed img {
                width: 384px !important;
                height: 512px !important;
                max-width: 384px !important;
                max-height: 512px !important;
                object-fit: contain !important;
            }
        }
        
        /* ๋ชจ๋ฐ”์ผ: ํ™”๋ฉด ํฌ๊ธฐ์— ๋งž๊ฒŒ ์Šค์ผ€์ผ๋งํ•˜๋˜ ๋น„์œจ ์œ ์ง€ */
        @media (max-width: 767px) {
            #image-editor-fixed {
                width: 100% !important;
                max-width: 100% !important;
            }
            #image-editor-fixed canvas {
                width: 100% !important;
                max-width: 100% !important;
                height: auto !important;
                aspect-ratio: 3/4 !important;
                object-fit: contain !important;
            }
            #image-editor-fixed > div,
            #image-editor-fixed .image-editor-container,
            #image-editor-fixed .image-editor-wrapper {
                width: 100% !important;
                max-width: 100% !important;
            }
            #image-editor-fixed img {
                width: 100% !important;
                max-width: 100% !important;
                height: auto !important;
                aspect-ratio: 3/4 !important;
                object-fit: contain !important;
            }
        }
        
        /* ์ถœ๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ ์ •: Masked image output ๋ฐ Output */
        /* PC: ๊ณ ์ • ํฌ๊ธฐ (384x512) */
        @media (min-width: 768px) {
            #masked-img img,
            #output-img img {
                width: 384px !important;
                height: 512px !important;
                max-width: 384px !important;
                max-height: 512px !important;
                object-fit: contain !important;
            }
            #masked-img,
            #output-img {
                max-width: 384px !important;
            }
        }
        
        /* ๋ชจ๋ฐ”์ผ: ํ™”๋ฉด ํฌ๊ธฐ์— ๋งž๊ฒŒ ์Šค์ผ€์ผ๋งํ•˜๋˜ ๋น„์œจ ์œ ์ง€ (์ตœ๋Œ€ 384px) */
        @media (max-width: 767px) {
            #masked-img img,
            #output-img img {
                width: 100% !important;
                max-width: 384px !important;
                height: auto !important;
                aspect-ratio: 3/4 !important;
                object-fit: contain !important;
            }
            #masked-img,
            #output-img {
                width: 100% !important;
                max-width: 384px !important;
            }
        }
    </style>
    <script>
        // PC ๋ฐ ๋ชจ๋ฐ”์ผ ๋ชจ๋‘์—์„œ canvas์˜ ์‹ค์ œ ํฌ๊ธฐ๋ฅผ ๊ณ ์ •ํ•˜์—ฌ ๋ธŒ๋Ÿฌ์‹œ ์œ„์น˜ ์ •ํ™•๋„ ์œ ์ง€
        (function() {
            const CANVAS_WIDTH = 384;
            const CANVAS_HEIGHT = 512;
            
            function fixImageEditorCanvas() {
                const editor = document.querySelector('#image-editor-fixed');
                if (!editor) return;
                
                const canvas = editor.querySelector('canvas');
                if (!canvas) return;
                
                // canvas์˜ ์‹ค์ œ ํ”ฝ์…€ ํฌ๊ธฐ๋Š” ํ•ญ์ƒ ๊ณ ์ • (๋ธŒ๋Ÿฌ์‹œ ์œ„์น˜ ์ •ํ™•๋„ ์œ ์ง€)
                if (canvas.width !== CANVAS_WIDTH || canvas.height !== CANVAS_HEIGHT) {
                    canvas.width = CANVAS_WIDTH;
                    canvas.height = CANVAS_HEIGHT;
                }
                
                // ๋ชจ๋ฐ”์ผ์—์„œ๋Š” CSS๋กœ ํ‘œ์‹œ ํฌ๊ธฐ๋งŒ ์กฐ์ •, PC์—์„œ๋Š” ๊ณ ์ • ํฌ๊ธฐ
                const isMobile = window.innerWidth <= 767;
                if (isMobile) {
                    // ๋ชจ๋ฐ”์ผ: ํ™”๋ฉด ํฌ๊ธฐ์— ๋งž๊ฒŒ ํ‘œ์‹œํ•˜๋˜ ๋น„์œจ ์œ ์ง€
                    const container = editor.closest('.gradio-column') || editor.parentElement;
                    if (container) {
                        const maxWidth = Math.min(container.offsetWidth - 20, 384);
                        const maxHeight = (maxWidth * 4) / 3;
                        canvas.style.width = maxWidth + 'px';
                        canvas.style.height = maxHeight + 'px';
                        canvas.style.maxWidth = '100%';
                        canvas.style.maxHeight = 'none';
                    }
                } else {
                    // PC: ๊ณ ์ • ํฌ๊ธฐ
                    canvas.style.width = CANVAS_WIDTH + 'px';
                    canvas.style.height = CANVAS_HEIGHT + 'px';
                    canvas.style.maxWidth = CANVAS_WIDTH + 'px';
                    canvas.style.maxHeight = CANVAS_HEIGHT + 'px';
                }
            }
            
            // ์ดˆ๊ธฐ ์‹คํ–‰
            if (document.readyState === 'loading') {
                document.addEventListener('DOMContentLoaded', fixImageEditorCanvas);
            } else {
                fixImageEditorCanvas();
            }
            
            // ์ด๋ฏธ์ง€ ๋กœ๋“œ ํ›„ ์žฌ์ ์šฉ
            window.addEventListener('load', function() {
                fixImageEditorCanvas();
                setTimeout(fixImageEditorCanvas, 500);
                setTimeout(fixImageEditorCanvas, 1500);
            });
            
            // ๋ฆฌ์‚ฌ์ด์ฆˆ ์‹œ ์žฌ์ ์šฉ (๋ชจ๋ฐ”์ผ ํšŒ์ „ ๋“ฑ)
            let resizeTimeout;
            window.addEventListener('resize', function() {
                clearTimeout(resizeTimeout);
                resizeTimeout = setTimeout(fixImageEditorCanvas, 300);
            });
            
            // MutationObserver๋กœ ๋™์  ๋ณ€๊ฒฝ ๊ฐ์ง€
            const observer = new MutationObserver(function(mutations) {
                fixImageEditorCanvas();
            });
            
            // ImageEditor๊ฐ€ ๋กœ๋“œ๋œ ํ›„ observer ์‹œ์ž‘
            setTimeout(function() {
                const editor = document.querySelector('#image-editor-fixed');
                if (editor) {
                    observer.observe(editor, {
                        childList: true,
                        subtree: true,
                        attributes: true,
                        attributeFilter: ['style', 'class']
                    });
                }
            }, 1000);
        })();
    </script>
    """)
    gr.Markdown("## DXCO : GENAI-VTON")
    gr.Markdown("์ž„์„ฑ๋‚จ, ์œค์ง€์˜, ์กฐ๋ฏผ์ฃผ based on IDM-VTON")
    gr.Markdown("์ด๋ฏธ์ง€๋Š” 3:4๋น„์œจ(384x512 ๋˜๋Š” 768x1024)๋กœ ์˜ฌ๋ ค์ฃผ์„ธ์š”")
    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='๋Œ€์ƒ ์ด๋ฏธ์ง€', interactive=True, height=512, elem_id="image-editor-fixed")
            img_url_input = gr.Textbox(label="๋Œ€์ƒ ์ด๋ฏธ์ง€ URL", placeholder="์˜ˆ) https://example.com/human_image.jpg")
            with gr.Row():
                with gr.Row():
                    is_checked = gr.Checkbox(label="Yes", info="์ž๋™ ๋งˆ์Šคํ‚น",value=True)
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=8,
                examples=human_ex_list,
            )

        with gr.Column():
            garm_img = gr.Image(label="์˜์ƒ ์ด๋ฏธ์ง€", sources='upload', type="pil")
            garm_url_input = gr.Textbox(label="์˜์ƒ ์ด๋ฏธ์ง€ URL", placeholder="์˜ˆ) https://example.com/garment.jpg")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
    with gr.Row():
        try_button = gr.Button(value="Try-on")
    with gr.Row():
        with gr.Column():
            masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False, height=512)
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False, height=512)
        
    
        # with gr.Accordion(label="Advanced Settings", open=False):
        #     with gr.Row():
        #         denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
        #         seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)

    # is_checked = gr.Number(value=True)

    # ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์‹œ ์ „์ฒ˜๋ฆฌ
    # imgs.upload(
    #     fn=preprocess_image,
    #     inputs=imgs,
    #     outputs=imgs,  # ์ „์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ImageEditor์— ๋‹ค์‹œ ํ‘œ์‹œ
    # )


    # ๋Œ€์ƒ ์ด๋ฏธ์ง€: URL ์ž…๋ ฅ ์ฒ˜๋ฆฌ
    img_url_input.change(
        fn=lambda url: process_url_image(url),
        inputs=img_url_input,
        outputs=imgs,
    )

    # ์˜์ƒ ์ด๋ฏธ์ง€: URL ์ž…๋ ฅ ์ฒ˜๋ฆฌ
    garm_url_input.change(
        fn=lambda url: process_url_image(url),
        inputs=garm_url_input,
        outputs=garm_img,
    )

    is_checked_crop = True
    denoise_steps = 30
    seed = 42
    try_button.click(
        fn=lambda *args: start_tryon(*args, is_checked_crop=is_checked_crop, denoise_steps=denoise_steps, seed=seed),
        inputs=[imgs, garm_img, prompt, is_checked],
        outputs=[image_out, masked_img],
        api_name='tryon'
    )

# DensePose ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
print("Initializing DensePose model...")
try:
    download_all_models()
    print("All model files downloaded successfully.")
except Exception as e:
    print(f"Warning: Could not download all model files: {e}")
    print("The models will be downloaded when needed during inference.")

# ์•ฑ ์‹คํ–‰
if __name__ == "__main__":
    try:
        print("Starting GENAI-VTON application...")
        image_blocks.launch(server_name="0.0.0.0", server_port=7860, share=False)
    except Exception as e:
        print(f"Error starting the application: {e}")
        print("Please check if all required dependencies are installed.")