Spaces:
Sleeping
Sleeping
File size: 30,151 Bytes
774cc79 a70dcb2 774cc79 a70dcb2 cc3292f a5dbfe3 a70dcb2 5701908 c225b36 7ba2aec 483eea7 7ba2aec a5dbfe3 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 c70a482 7ba2aec c70a482 7ba2aec 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 c70a482 7ba2aec c70a482 7ba2aec a70dcb2 5701908 a70dcb2 c70a482 7ba2aec c70a482 7ba2aec a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 50da29c 7eb088d 5701908 a70dcb2 939f91e ffb6807 7ba2aec ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e ffb6807 939f91e 7d093ef e40b007 7d093ef cc3292f 7d093ef cc3292f 7d093ef c225b36 a5dbfe3 c225b36 cc3292f c225b36 cc3292f c225b36 cc3292f c225b36 cc3292f 93412b6 cc3292f c225b36 cc3292f 93412b6 c225b36 cc3292f 87a611c 93412b6 cc3292f c225b36 93412b6 c225b36 e40b007 87a611c e40b007 87a611c e40b007 87a611c e40b007 87a611c e40b007 87a611c e40b007 87a611c e40b007 f40d1d0 87a611c e40b007 87a611c 08b2d47 e40b007 08b2d47 e40b007 87a611c e40b007 5701908 e40b007 5701908 e40b007 5701908 e40b007 5701908 e40b007 5701908 e40b007 5701908 e40b007 87a611c f64b8d2 ae5bfe2 774cc79 a70dcb2 0e63823 a70dcb2 87a611c f264da1 87a611c a70dcb2 5701908 a70dcb2 5701908 a70dcb2 5701908 a70dcb2 93412b6 a70dcb2 5701908 a70dcb2 5701908 9715fba 3e52e69 ffb6807 8333e11 a70dcb2 9715fba 3f5c665 9715fba c52faa8 3f5c665 9715fba 3f5c665 a70dcb2 3f5c665 9715fba 3f5c665 8333e11 3f5c665 8333e11 4b8938e 8333e11 a706269 51cd317 7d093ef 6f12b4e 7d093ef c225b36 cc3292f c225b36 cc3292f c225b36 c52faa8 891b6d4 939f91e 7ba2aec 5701908 939f91e 5701908 a70dcb2 6614b04 5701908 a5dbfe3 e40b007 5701908 a5dbfe3 5701908 e40b007 a5dbfe3 5701908 a5dbfe3 5701908 a5dbfe3 5701908 a5dbfe3 5701908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List
import torch
import os
import io
import warnings
import requests
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
# import pillow_heif # HEIC ์ด๋ฏธ์ง ์ฒ๋ฆฌ์ฉ (์์ดํฐ ์ดฌ์ ์ฌ์ง ํฌ๋งท)
from urllib.parse import urlparse
# zeroGPU ํ๊ฒฝ์์ compile ์ฌ์ฉ ์ฌ๋ถ
is_compile_for_zeroGPU = False # True: compile ์ฌ์ฉ, False: compile ์ฌ์ฉ ์ ํจ
# SSL ๊ฒฝ๊ณ ์ต์
warnings.filterwarnings("ignore", message=".*OpenSSL.*")
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")
# requests ์ธ์
์ค์
session = requests.Session()
session.verify = False # SSL ๊ฒ์ฆ ๋นํ์ฑํ (๊ฐ๋ฐ ํ๊ฒฝ์ฉ)
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
print("=" * 60)
print("Starting GENAI-VTON Application Initialization")
print("=" * 60)
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
print("\n[1/10] Loading UNet model...")
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
# torch.compile() ์ ์ฉ - ์ถ๋ก ์๋ 20-40% ํฅ์ (PyTorch 2.0+)
# ์ฃผ์: ์ฒซ ๋ฒ์งธ ์ถ๋ก ์ ์ปดํ์ผ๋ก ์ธํด ๋๋ฆด ์ ์์
if is_compile_for_zeroGPU == True:
print("โ UNet model loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
unet = torch.compile(unet, mode="reduce-overhead")
print("โ UNet model loaded and compiled successfully")
except Exception as e:
print(f"โ UNet model loaded (compile skipped: {e})")
else:
print("โ UNet model loaded successfully")
print("\n[2/10] Loading tokenizers...")
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
print("โ Tokenizers loaded successfully")
print("\n[3/10] Loading noise scheduler...")
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
print("โ Noise scheduler loaded successfully")
print("\n[4/10] Loading text encoders...")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
print("โ Text encoders loaded successfully")
print("\n[5/10] Loading image encoder...")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
print("โ Image encoder loaded successfully")
print("\n[6/10] Loading VAE...")
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# torch.compile() ์ ์ฉ - VAE ์ธ์ฝ๋ฉ/๋์ฝ๋ฉ ์๋ ํฅ์
if is_compile_for_zeroGPU == True:
print("โ VAE loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
vae = torch.compile(vae, mode="reduce-overhead")
print("โ VAE loaded and compiled successfully")
except Exception as e:
print(f"โ VAE loaded (compile skipped: {e})")
else:
print("โ VAE loaded successfully")
print("\n[7/10] Loading UNet Encoder...")
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
# torch.compile() ์ ์ฉ - UNet Encoder ์๋ ํฅ์
if is_compile_for_zeroGPU == True:
print("โ UNet Encoder loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
UNet_Encoder = torch.compile(UNet_Encoder, mode="reduce-overhead")
print("โ UNet Encoder loaded and compiled successfully")
except Exception as e:
print(f"โ UNet Encoder loaded (compile skipped: {e})")
else:
print("โ UNet Encoder loaded successfully")
print("\n[8/10] Initializing parsing and openpose models...")
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
print("โ Parsing and OpenPose models initialized")
print("\n[9/10] Configuring model parameters...")
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
print("โ Model parameters configured")
print("\n[10/10] Initializing TryonPipeline...")
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
print("โ TryonPipeline initialized successfully")
# torch, diffusers ๋ฑ ๋ฒ์ ์ ๋ฆฌ ํ ์ ์ฉ ๊ฐ๋ฅ.
# # xFormers ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ดํ
์
ํ์ฑํ (๋ฉ๋ชจ๋ฆฌ 20-30% ๊ฐ์, ์๋ 10-20% ํฅ์)
# print("\n[Optimization] Enabling xFormers memory efficient attention...")
# try:
# pipe.enable_xformers_memory_efficient_attention()
# print("โ xFormers memory efficient attention enabled")
# except Exception as e:
# print(f"โ xFormers not available, using default attention: {e}")
print("\n" + "=" * 60)
print("All models loaded successfully!")
print("=" * 60 + "\n")
# Warm-up: ์ฒซ ๋ฒ์งธ ์ถ๋ก ์ง์ฐ ๊ฐ์๋ฅผ ์ํ ๋ชจ๋ธ ์ด๊ธฐํ
# JIT ์ปดํ์ผ, CUDA ์ปค๋ ๋ก๋ฉ ๋ฑ์ ๋ฏธ๋ฆฌ ์ํ
print("=" * 60)
print("Warming up models (CPU)...")
print("=" * 60)
def warmup_models_cpu():
"""์ฑ ์์ ์ CPU ๋ชจ๋ธ ์ด๊ธฐํ๋ฅผ ์ํ Warm-up ํจ์"""
try:
# CPU์์ ํ
์คํธ ์๋ฒ ๋ฉ Warm-up (Tokenizer + Text Encoder ์ด๊ธฐํ)
print("[CPU Warm-up 1/2] Text Encoder warm-up...")
with torch.no_grad():
dummy_prompt = "a photo of clothing"
dummy_tokens = tokenizer_one(
dummy_prompt,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt"
)
# CPU์์ ์คํ ๊ฐ๋ฅํ ์ด๊ธฐํ
_ = text_encoder_one(dummy_tokens.input_ids, output_hidden_states=True)
print("โ Text Encoder warmed up")
# Tensor ๋ณํ Warm-up
print("[CPU Warm-up 2/2] Tensor transform warm-up...")
dummy_img = Image.new('RGB', (768, 1024), color='white')
_ = tensor_transfrom(dummy_img)
print("โ Tensor transform warmed up")
return True
except Exception as e:
print(f"โ CPU Warm-up partially completed: {e}")
return False
# CPU Warm-up ์คํ
warmup_success = warmup_models_cpu()
if warmup_success:
print("\nโ CPU warm-up completed successfully")
else:
print("\nโ CPU warm-up completed with warnings")
print("=" * 60 + "\n")
# torch.compile ์ค๋ฅ ์ eager ๋ชจ๋๋ก ํด๋ฐฑ ์ค์
# ์ปค์คํ
UNet forward ๋ฉ์๋ ํธํ์ฑ ๋ฌธ์ ๋์
if is_compile_for_zeroGPU == True:
print("โ torch.compile is disabled for ZeroGPU")
else:
try:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
print("โ torch._dynamo.config.suppress_errors enabled (fallback to eager mode on error)")
except Exception as e:
print(f"โ torch._dynamo config not available: {e}")
# GPU Warm-up ํจ์ (์ฑ ๋ก๋ ์ ์๋ ์คํ)
# Text Encoder, VAE GPU ๋ก๋ฉ ๋ฐ CUDA ์ปค๋ ์ด๊ธฐํ
@spaces.GPU
def warmup_gpu():
"""์ฑ ๋ก๋ ์ GPU ๋ชจ๋ธ ์ด๊ธฐํ๋ฅผ ์ํ Warm-up ํจ์"""
try:
device = "cuda"
print("=" * 60)
print("GPU Warm-up: Loading models to GPU and initializing CUDA kernels...")
print("=" * 60)
# ๋ชจ๋ธ์ GPU๋ก ์ด๋
print("[GPU Warm-up 1/4] Moving models to GPU...")
pipe.to(device)
pipe.unet_encoder.to(device)
print("โ Models moved to GPU")
# ๋๋ฏธ ํ
์ ์์ฑ
with torch.no_grad():
with torch.cuda.amp.autocast():
# 1. ๋๋ฏธ ํ๋กฌํํธ ์๋ฒ ๋ฉ ์์ฑ (Text Encoder GPU warm-up)
print("[GPU Warm-up 2/4] Text Encoder GPU warm-up...")
dummy_prompt = "a photo of white t-shirt"
_ = pipe.encode_prompt(
dummy_prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="low quality",
)
print("โ Text Encoder GPU warmed up")
# 2. ๋๋ฏธ ์ด๋ฏธ์ง๋ก VAE ์ธ์ฝ๋ฉ/๋์ฝ๋ฉ (VAE GPU warm-up)
print("[GPU Warm-up 3/4] VAE GPU warm-up...")
dummy_img = torch.randn(1, 3, 1024, 768).to(device, torch.float16)
latents = pipe.vae.encode(dummy_img).latent_dist.sample()
_ = pipe.vae.decode(latents)
print("โ VAE GPU warmed up (encode + decode)")
# 3. CUDA ๋๊ธฐํ (์ปค๋ ๋ก๋ฉ ์๋ฃ ๋๊ธฐ)
print("[GPU Warm-up 4/4] CUDA synchronization...")
torch.cuda.synchronize()
print("โ CUDA kernels initialized")
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
torch.cuda.empty_cache()
print("\n" + "=" * 60)
print("โ GPU Warm-up completed!")
print(" Text Encoder, VAE ready. UNet will compile on first request.")
print(" (torch.compile errors will fallback to eager mode)")
print("=" * 60 + "\n")
return "GPU Warm-up completed successfully!"
except Exception as e:
print(f"\nโ GPU Warm-up failed: {e}")
print(" Models will be loaded on first user request.")
return f"GPU Warm-up skipped: {e}"
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํจ์
def preprocess_image(image):
# HEIC ์ด๋ฏธ์ง ์ฒ๋ฆฌ
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# HEIC ์ด๋ฏธ์ง๋ฅผ JPEG๋ก ๋ณํ - ์ด๊ฑฐ ์ ๋จนํ๋ ๊ฑฐ ๊ฐ์๋ฐ....
try:
output = io.BytesIO()
image.convert("RGB").save(output, format="JPEG", quality=95)
output.seek(0)
image = Image.open(output)
except Exception as e:
print(f"Error converting image: {e}")
# ๋ณํ ์คํจ ์ ์๋ณธ ์ด๋ฏธ์ง ์ฌ์ฉ
image = image.convert("RGB")
# ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ฐ์ ธ์ค๊ธฐ
width, height = image.size
# 3:4 ๋น์จ๋ก ์ค์ ์๋ฅด๊ธฐ
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
# ์ด๋ฏธ์ง ์๋ฅด๊ธฐ
cropped_img = image.crop((left, top, right, bottom))
# 768x1024๋ก ๋ฆฌ์ฌ์ด์ง
resized_img = cropped_img.resize((768, 1024), resample=Image.Resampling.LANCZOS)
return resized_img
# URL์์ ์ด๋ฏธ์ง ๊ฐ์ ธ์ค๊ธฐ ํจ์
def load_image_from_url(url):
try:
response = session.get(url, stream=True, timeout=10)
response.raise_for_status() # HTTP ์ค๋ฅ ํ์ธ
# ์ด๋ฏธ์ง ๋ค์ด๋ก๋
img = Image.open(response.raw).convert("RGB")
# JPEG๋ก ๋ณํ
output = io.BytesIO()
img.save(output, format="JPEG", quality=95)
output.seek(0)
# ๋ณํ๋ JPEG ์ด๋ฏธ์ง ๋ฐํ
jpeg_img = Image.open(output)
return jpeg_img
except requests.exceptions.RequestException as e:
print(f"Error downloading image from URL: {e}")
return None
except Exception as e:
print(f"Error processing image from URL: {e}")
return None
def process_url_image(url):
"""Process image from URL and return PIL Image"""
if not url or not url.strip():
return None
# URL ์ ํจ์ฑ ๊ฒ์ฌ
try:
result = urlparse(url)
if not all([result.scheme, result.netloc]):
print("Invalid URL format")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
img = load_image_from_url(url)
if img is None:
print("Failed to load image from URL")
return None
return preprocess_image(img)
def load_example_for_editor(image_path):
"""Load example image for ImageEditor component"""
if image_path is None:
return None
# ImageEditor๋ ํน์ ํ์์ ๊ธฐ๋ํ๋ฏ๋ก ๋์
๋๋ฆฌ ํํ๋ก ๋ฐํ
return {
"background": image_path,
"layers": None,
"composite": None
}
def download_model_file(model_path, urls):
"""Download model file from multiple URLs if it doesn't exist"""
if os.path.exists(model_path):
print(f"Model file already exists: {model_path}")
return True
os.makedirs(os.path.dirname(model_path), exist_ok=True)
for url in urls:
try:
print(f"Downloading from: {url}")
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
with open(model_path, 'wb') as f:
downloaded = 0
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = (downloaded / total_size) * 100
if(percent % 10 == 0):
print(f"\rDownload progress: {percent:.1f}%", end='', flush=True)
print(f"\nSuccessfully downloaded: {model_path}")
return True
except Exception as e:
print(f"Failed to download from {url}: {e}")
continue
print(f"Failed to download model file from all URLs: {model_path}")
return False
def download_densepose_model():
"""Download DensePose model file"""
model_path = "ckpt/densepose/model_final_162be9.pkl"
urls = [
"https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl",
"https://github.com/facebookresearch/densepose/releases/download/v1.0/model_final_162be9.pkl"
]
return download_model_file(model_path, urls)
def download_openpose_model():
"""Download OpenPose model file"""
model_path = "ckpt/openpose/ckpts/body_pose_model.pth"
urls = [
"https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth"
]
return download_model_file(model_path, urls)
def download_humanparsing_models():
"""Download Human Parsing model files"""
base_url = "https://huggingface.co/Longcat2957/humanparsing-onnx/resolve/main"
models = [
("ckpt/humanparsing/parsing_atr.onnx", f"{base_url}/parsing_atr.onnx"),
("ckpt/humanparsing/parsing_lip.onnx", f"{base_url}/parsing_lip.onnx")
]
success = True
for model_path, url in models:
if os.path.exists(model_path):
print(f"Human parsing model already exists: {model_path}")
continue
print(f"Downloading {model_path} from {url}")
if download_model_file(model_path, [url]):
print(f"Successfully downloaded: {model_path}")
else:
print(f"Failed to download: {model_path}")
success = False
return success
def download_all_models():
"""Download all required model files"""
print("Checking and downloading required model files...")
# Download DensePose model
print("\n[1/3] Downloading DensePose model...")
densepose_success = download_densepose_model()
if densepose_success:
print("โ DensePose model ready")
else:
print("โ DensePose model download failed (will download on demand)")
# Download OpenPose model
print("\n[2/3] Downloading OpenPose model...")
openpose_success = download_openpose_model()
if openpose_success:
print("โ OpenPose model ready")
else:
print("โ OpenPose model download failed (will download on demand)")
# Download Human Parsing models
print("\n[3/3] Downloading Human Parsing models...")
parsing_success = download_humanparsing_models()
if parsing_success:
print("โ Human Parsing models ready")
else:
print("โ Human Parsing models download failed (will download on demand)")
return densepose_success and openpose_success and parsing_success
@spaces.GPU
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop, denoise_steps,seed):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img= garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768,1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# mask = transforms.ToTensor()(mask)
# mask = mask.unsqueeze(0)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
# DensePose ๋ชจ๋ธ ๋ค์ด๋ก๋ ๋ฐ ๊ฒฝ๋ก ์ค์
densepose_model_path = './ckpt/densepose/model_final_162be9.pkl'
# ๋ชจ๋ธ ํ์ผ์ด ์์ผ๋ฉด ๋ค์ด๋ก๋ ์๋
if not os.path.exists(densepose_model_path):
print("DensePose model not found, attempting to download...")
download_success = download_densepose_model()
if not download_success:
print("Failed to download DensePose model")
return None, None
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', densepose_model_path, 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device,torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
cloth = garm_tensor.to(device,torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image = garm_img.resize((768,1024)),
guidance_scale=2.0,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray
# return images[0], mask_gray
print("\n" + "=" * 60)
print("Loading Example Images...")
print("=" * 60)
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
print(f"โ Found {len(garm_list_path)} garment example images")
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
print(f"โ Found {len(human_list_path)} human example images")
# human_ex_list๋ฅผ ๋จ์ํ ์ด๋ฏธ์ง ๊ฒฝ๋ก ๋ฆฌ์คํธ๋ก ๋ณ๊ฒฝ (๊ทธ๋ฆฌ๋ ํ์๋ฅผ ์ํด)
human_ex_list = human_list_path
##default human
print("\n" + "=" * 60)
print("Creating Gradio Application Interface...")
print("=" * 60)
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
print("โ Gradio Blocks created")
gr.Markdown("## DXCO : GENAI-VTON")
gr.Markdown("์์ฑ๋จ, ์ค์ง์, ์กฐ๋ฏผ์ฃผ based on IDM-VTON")
gr.Markdown("* ๋งจ ์ฒ์ ์ถ๋ก ์ [5๋ถ] ๊ฑธ๋ฆผ - compile๊ณผ GPU warm-up *")
gr.Markdown("๊ถ์ฅ ์ด๋ฏธ์ง ์ฌ์ด์ฆ - 3:4๋น์จ(384x512,768x1024)")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='๋์ ์ด๋ฏธ์ง', interactive=True)
with gr.Row():
img_url_input = gr.Textbox(label="๋์ ์ด๋ฏธ์ง URL", placeholder="์) https://example.com/human_image.jpg")
with gr.Row():
is_checked = gr.Checkbox(label="Yes", info="์๋ ๋ง์คํน",value=True)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="์๋ ํฌ๋กญ ๋ฐ ๋ฆฌ์ฌ์ด์ง",value=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="์์ ์ด๋ฏธ์ง", sources='upload', type="pil")
with gr.Row():
garm_url_input = gr.Textbox(label="์์ ์ด๋ฏธ์ง URL", placeholder="์) https://example.com/garment.jpg")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
with gr.Column():
try_button = gr.Button(value="Try-on")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
# is_checked = gr.Number(value=True)
# ์ด๋ฏธ์ง ์
๋ก๋ ์ ์ ์ฒ๋ฆฌ
# imgs.upload(
# fn=preprocess_image,
# inputs=imgs,
# outputs=imgs, # ์ ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง๋ฅผ ImageEditor์ ๋ค์ ํ์
# )
# ๋์ ์ด๋ฏธ์ง: URL ์
๋ ฅ ์ฒ๋ฆฌ
img_url_input.change(
fn=lambda url: process_url_image(url),
inputs=img_url_input,
outputs=imgs,
)
# ์์ ์ด๋ฏธ์ง: URL ์
๋ ฅ ์ฒ๋ฆฌ
garm_url_input.change(
fn=lambda url: process_url_image(url),
inputs=garm_url_input,
outputs=garm_img,
)
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
outputs=[image_out, masked_img],
api_name='tryon'
)
# GPU Warm-up ์ํ ํ์์ฉ (์จ๊น)
warmup_status = gr.Textbox(visible=False)
# ์ฑ ๋ก๋ ์ GPU Warm-up ์๋ ์คํ (torch.compile ์ฒซ ์ปดํ์ผ)
if is_compile_for_zeroGPU == True:
print("โ GPU warm-up is disabled for ZeroGPU")
else:
demo.load(
fn=warmup_gpu,
inputs=None,
outputs=warmup_status,
)
print("โ Gradio interface components created")
print("โ Event handlers configured")
print("โ GPU warm-up scheduled on app load")
print("\n" + "=" * 60)
print("Gradio Application Interface Created Successfully!")
print("=" * 60)
# DensePose ๋ชจ๋ธ ๋ค์ด๋ก๋
print("\n" + "=" * 60)
print("Checking and Downloading Additional Models...")
print("=" * 60)
try:
download_all_models()
print("\nโ All model files downloaded successfully.")
except Exception as e:
print(f"\nโ Warning: Could not download all model files: {e}")
print("The models will be downloaded when needed during inference.")
# ์ฑ ์คํ
print("\n" + "=" * 60)
print("Launching Application Server...")
print("=" * 60)
if __name__ == "__main__":
try:
print("Starting GENAI-VTON application on http://0.0.0.0:7860")
print("Please wait while the server starts...")
image_blocks.launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
print(f"\nโ Error starting the application: {e}")
print("Please check if all required dependencies are installed.")
import traceback
traceback.print_exc()
|