Spaces:
Sleeping
Sleeping
Commit
·
6d531e9
1
Parent(s):
31f3625
Multi-Tool Parallel Execution
Browse files- backend/api/services/agent_orchestrator.py +322 -90
- backend/api/services/result_merger.py +136 -0
- backend/api/services/tool_selector.py +98 -12
- data/analytics.db +0 -0
backend/api/services/agent_orchestrator.py
CHANGED
|
@@ -23,6 +23,7 @@ from .llm_client import LLMClient
|
|
| 23 |
from ..mcp_clients.mcp_client import MCPClient
|
| 24 |
from .tool_scoring import ToolScoringService
|
| 25 |
from ..storage.analytics_store import AnalyticsStore
|
|
|
|
| 26 |
import time
|
| 27 |
|
| 28 |
|
|
@@ -661,126 +662,322 @@ Response:"""
|
|
| 661 |
reasoning_trace: List[Dict[str, Any]],
|
| 662 |
pre_fetched_rag: Optional[Dict[str, Any]] = None) -> AgentResponse:
|
| 663 |
"""
|
| 664 |
-
Execute multiple tools in sequence and synthesize results with LLM.
|
|
|
|
| 665 |
"""
|
|
|
|
| 666 |
rag_data = None
|
| 667 |
web_data = None
|
| 668 |
admin_data = None
|
| 669 |
collected_data = []
|
|
|
|
|
|
|
| 670 |
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
web_parallel_query = self._first_query_for_tool(steps, "web", req.message)
|
| 674 |
-
if rag_parallel_query and web_parallel_query and rag_parallel_query == web_parallel_query:
|
| 675 |
-
if not pre_fetched_rag:
|
| 676 |
-
parallel_tasks["rag"] = asyncio.create_task(self.mcp.call_rag(req.tenant_id, rag_parallel_query))
|
| 677 |
-
parallel_tasks["web"] = asyncio.create_task(self.mcp.call_web(req.tenant_id, web_parallel_query))
|
| 678 |
-
|
| 679 |
-
# Execute each step in sequence
|
| 680 |
for step_info in steps:
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
else:
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
reasoning_trace.append({
|
| 753 |
-
"step": "
|
| 754 |
-
"
|
| 755 |
-
"
|
| 756 |
})
|
| 757 |
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
if data_section:
|
| 762 |
prompt = (
|
| 763 |
f"You are an assistant helping tenant {req.tenant_id}.\n\n"
|
| 764 |
-
f"
|
|
|
|
| 765 |
f"{data_section}\n\n"
|
| 766 |
-
f"User
|
| 767 |
-
f"
|
| 768 |
-
f"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 769 |
)
|
|
|
|
| 770 |
else:
|
| 771 |
# No data collected, just answer the question
|
| 772 |
prompt = req.message
|
| 773 |
|
| 774 |
# Final LLM synthesis
|
| 775 |
try:
|
|
|
|
| 776 |
llm_out = await self.llm.simple_call(prompt, temperature=req.temperature)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 777 |
return AgentResponse(
|
| 778 |
text=llm_out,
|
| 779 |
decision=decision,
|
| 780 |
tool_traces=tool_traces,
|
| 781 |
reasoning_trace=reasoning_trace + [{
|
| 782 |
"step": "llm_response",
|
| 783 |
-
"mode": "multi_step"
|
|
|
|
|
|
|
| 784 |
}]
|
| 785 |
)
|
| 786 |
except Exception as e:
|
|
@@ -826,10 +1023,21 @@ Response:"""
|
|
| 826 |
snippets.append(f"{title}\n{snippet}\nSource: {url}")
|
| 827 |
|
| 828 |
snippet_text = "\n---\n".join(snippets) or ""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 829 |
prompt = (
|
| 830 |
-
f"You are an assistant with access to recent web search results
|
| 831 |
-
f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 832 |
)
|
|
|
|
| 833 |
return prompt
|
| 834 |
|
| 835 |
@staticmethod
|
|
@@ -849,6 +1057,30 @@ Response:"""
|
|
| 849 |
summaries.append(snippet[:160])
|
| 850 |
return summaries
|
| 851 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 852 |
@staticmethod
|
| 853 |
def _first_query_for_tool(steps: List[Dict[str, Any]], tool_name: str, default_query: str) -> Optional[str]:
|
| 854 |
for step in steps:
|
|
|
|
| 23 |
from ..mcp_clients.mcp_client import MCPClient
|
| 24 |
from .tool_scoring import ToolScoringService
|
| 25 |
from ..storage.analytics_store import AnalyticsStore
|
| 26 |
+
from .result_merger import merge_parallel_results, format_merged_context_for_prompt
|
| 27 |
import time
|
| 28 |
|
| 29 |
|
|
|
|
| 662 |
reasoning_trace: List[Dict[str, Any]],
|
| 663 |
pre_fetched_rag: Optional[Dict[str, Any]] = None) -> AgentResponse:
|
| 664 |
"""
|
| 665 |
+
Execute multiple tools in sequence or parallel and synthesize results with LLM.
|
| 666 |
+
Supports parallel execution when steps are marked with "parallel" flag.
|
| 667 |
"""
|
| 668 |
+
start_time = time.time()
|
| 669 |
rag_data = None
|
| 670 |
web_data = None
|
| 671 |
admin_data = None
|
| 672 |
collected_data = []
|
| 673 |
+
tools_used = []
|
| 674 |
+
total_tokens = 0
|
| 675 |
|
| 676 |
+
# Check if any step has parallel execution flag
|
| 677 |
+
parallel_step = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
for step_info in steps:
|
| 679 |
+
if step_info.get("parallel"):
|
| 680 |
+
parallel_step = step_info
|
| 681 |
+
break
|
| 682 |
|
| 683 |
+
# Handle parallel execution if detected
|
| 684 |
+
if parallel_step and parallel_step.get("parallel"):
|
| 685 |
+
parallel_config = parallel_step.get("parallel")
|
| 686 |
+
parallel_tasks = {}
|
| 687 |
+
start_time_parallel = time.time()
|
| 688 |
+
|
| 689 |
+
# Prepare parallel tasks
|
| 690 |
+
if "rag" in parallel_config:
|
| 691 |
+
rag_query = parallel_config["rag"]
|
| 692 |
+
if pre_fetched_rag:
|
| 693 |
+
# Use pre-fetched RAG if available - create a simple async function
|
| 694 |
+
async def get_prefetched_rag():
|
| 695 |
+
return pre_fetched_rag
|
| 696 |
+
parallel_tasks["rag"] = get_prefetched_rag()
|
| 697 |
+
else:
|
| 698 |
+
parallel_tasks["rag"] = self.mcp.call_rag(req.tenant_id, rag_query)
|
| 699 |
+
|
| 700 |
+
if "web" in parallel_config:
|
| 701 |
+
web_query = parallel_config["web"]
|
| 702 |
+
parallel_tasks["web"] = self.mcp.call_web(req.tenant_id, web_query)
|
| 703 |
+
|
| 704 |
+
# Execute tools in parallel
|
| 705 |
+
if parallel_tasks:
|
| 706 |
+
reasoning_trace.append({
|
| 707 |
+
"step": "parallel_execution",
|
| 708 |
+
"tools": list(parallel_tasks.keys()),
|
| 709 |
+
"mode": "parallel"
|
| 710 |
+
})
|
| 711 |
+
|
| 712 |
+
parallel_results = await self.run_parallel_tools(parallel_tasks)
|
| 713 |
+
parallel_latency_ms = int((time.time() - start_time_parallel) * 1000)
|
| 714 |
+
|
| 715 |
+
# Process RAG results
|
| 716 |
+
if "rag" in parallel_results:
|
| 717 |
+
rag_result = parallel_results["rag"]
|
| 718 |
+
if isinstance(rag_result, Exception):
|
| 719 |
+
tool_traces.append({"tool": "rag", "error": str(rag_result), "note": "parallel"})
|
| 720 |
+
reasoning_trace.append({
|
| 721 |
+
"step": "tool_execution",
|
| 722 |
+
"tool": "rag",
|
| 723 |
+
"status": "error",
|
| 724 |
+
"error": str(rag_result),
|
| 725 |
+
"latency_ms": parallel_latency_ms
|
| 726 |
+
})
|
| 727 |
+
self.analytics.log_tool_usage(
|
| 728 |
+
tenant_id=req.tenant_id,
|
| 729 |
+
tool_name="rag",
|
| 730 |
+
latency_ms=parallel_latency_ms,
|
| 731 |
+
success=False,
|
| 732 |
+
error_message=str(rag_result)[:200],
|
| 733 |
+
user_id=req.user_id
|
| 734 |
+
)
|
| 735 |
else:
|
| 736 |
+
rag_data = rag_result
|
| 737 |
+
tools_used.append("rag")
|
| 738 |
+
tool_traces.append({"tool": "rag", "response": rag_result, "note": "parallel"})
|
| 739 |
+
hits_count = len(self._extract_hits(rag_result))
|
| 740 |
+
avg_score = None
|
| 741 |
+
top_score = None
|
| 742 |
+
if hits_count > 0:
|
| 743 |
+
scores = [h.get("score", 0.0) for h in self._extract_hits(rag_result) if isinstance(h, dict) and "score" in h]
|
| 744 |
+
if scores:
|
| 745 |
+
avg_score = sum(scores) / len(scores)
|
| 746 |
+
top_score = max(scores)
|
| 747 |
+
self.analytics.log_rag_search(
|
| 748 |
+
tenant_id=req.tenant_id,
|
| 749 |
+
query=req.message[:500],
|
| 750 |
+
hits_count=hits_count,
|
| 751 |
+
avg_score=avg_score,
|
| 752 |
+
top_score=top_score,
|
| 753 |
+
latency_ms=parallel_latency_ms
|
| 754 |
+
)
|
| 755 |
+
self.analytics.log_tool_usage(
|
| 756 |
+
tenant_id=req.tenant_id,
|
| 757 |
+
tool_name="rag",
|
| 758 |
+
latency_ms=parallel_latency_ms,
|
| 759 |
+
success=True,
|
| 760 |
+
user_id=req.user_id
|
| 761 |
+
)
|
| 762 |
+
reasoning_trace.append({
|
| 763 |
+
"step": "tool_execution",
|
| 764 |
+
"tool": "rag",
|
| 765 |
+
"hit_count": hits_count,
|
| 766 |
+
"summary": self._summarize_hits(rag_result, limit=2),
|
| 767 |
+
"latency_ms": parallel_latency_ms,
|
| 768 |
+
"mode": "parallel"
|
| 769 |
+
})
|
| 770 |
|
| 771 |
+
# Process Web results
|
| 772 |
+
if "web" in parallel_results:
|
| 773 |
+
web_result = parallel_results["web"]
|
| 774 |
+
if isinstance(web_result, Exception):
|
| 775 |
+
tool_traces.append({"tool": "web", "error": str(web_result), "note": "parallel"})
|
| 776 |
+
reasoning_trace.append({
|
| 777 |
+
"step": "tool_execution",
|
| 778 |
+
"tool": "web",
|
| 779 |
+
"status": "error",
|
| 780 |
+
"error": str(web_result),
|
| 781 |
+
"latency_ms": parallel_latency_ms
|
| 782 |
+
})
|
| 783 |
+
self.analytics.log_tool_usage(
|
| 784 |
+
tenant_id=req.tenant_id,
|
| 785 |
+
tool_name="web",
|
| 786 |
+
latency_ms=parallel_latency_ms,
|
| 787 |
+
success=False,
|
| 788 |
+
error_message=str(web_result)[:200],
|
| 789 |
+
user_id=req.user_id
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
web_data = web_result
|
| 793 |
+
tools_used.append("web")
|
| 794 |
+
tool_traces.append({"tool": "web", "response": web_result, "note": "parallel"})
|
| 795 |
+
hits_count = len(self._extract_hits(web_result))
|
| 796 |
+
self.analytics.log_tool_usage(
|
| 797 |
+
tenant_id=req.tenant_id,
|
| 798 |
+
tool_name="web",
|
| 799 |
+
latency_ms=parallel_latency_ms,
|
| 800 |
+
success=True,
|
| 801 |
+
user_id=req.user_id
|
| 802 |
+
)
|
| 803 |
+
reasoning_trace.append({
|
| 804 |
+
"step": "tool_execution",
|
| 805 |
+
"tool": "web",
|
| 806 |
+
"hit_count": hits_count,
|
| 807 |
+
"summary": self._summarize_hits(web_result, limit=2),
|
| 808 |
+
"latency_ms": parallel_latency_ms,
|
| 809 |
+
"mode": "parallel"
|
| 810 |
+
})
|
| 811 |
|
| 812 |
+
# Merge parallel results
|
| 813 |
+
merged_context = merge_parallel_results(parallel_results)
|
| 814 |
+
sources_list = list(set(e.get("source") for e in merged_context if e.get("source"))) if merged_context else []
|
| 815 |
reasoning_trace.append({
|
| 816 |
+
"step": "result_merger",
|
| 817 |
+
"merged_items": len(merged_context),
|
| 818 |
+
"sources": sources_list
|
| 819 |
})
|
| 820 |
|
| 821 |
+
# Format merged context for prompt
|
| 822 |
+
data_section = format_merged_context_for_prompt(merged_context, max_items=10)
|
| 823 |
+
else:
|
| 824 |
+
data_section = ""
|
| 825 |
+
|
| 826 |
+
else:
|
| 827 |
+
# Sequential execution (original logic)
|
| 828 |
+
parallel_tasks = {}
|
| 829 |
+
rag_parallel_query = self._first_query_for_tool(steps, "rag", req.message)
|
| 830 |
+
web_parallel_query = self._first_query_for_tool(steps, "web", req.message)
|
| 831 |
+
if rag_parallel_query and web_parallel_query and rag_parallel_query == web_parallel_query:
|
| 832 |
+
if not pre_fetched_rag:
|
| 833 |
+
parallel_tasks["rag"] = asyncio.create_task(self.mcp.call_rag(req.tenant_id, rag_parallel_query))
|
| 834 |
+
parallel_tasks["web"] = asyncio.create_task(self.mcp.call_web(req.tenant_id, web_parallel_query))
|
| 835 |
+
|
| 836 |
+
# Execute each step in sequence
|
| 837 |
+
for step_info in steps:
|
| 838 |
+
tool_name = step_info.get("tool")
|
| 839 |
+
step_input = step_info.get("input") or {}
|
| 840 |
+
query = step_input.get("query") or req.message
|
| 841 |
+
|
| 842 |
+
try:
|
| 843 |
+
if tool_name == "rag":
|
| 844 |
+
# Reuse pre-fetched RAG if available, otherwise fetch
|
| 845 |
+
if pre_fetched_rag and query == rag_parallel_query:
|
| 846 |
+
rag_resp = pre_fetched_rag
|
| 847 |
+
tool_traces.append({"tool": "rag", "response": rag_resp, "note": "used_pre_fetched"})
|
| 848 |
+
elif parallel_tasks.get("rag") and query == rag_parallel_query:
|
| 849 |
+
rag_resp = await parallel_tasks["rag"]
|
| 850 |
+
tool_traces.append({"tool": "rag", "response": rag_resp, "note": "parallel"})
|
| 851 |
+
else:
|
| 852 |
+
rag_resp = await self.mcp.call_rag(req.tenant_id, query)
|
| 853 |
+
tool_traces.append({"tool": "rag", "response": rag_resp})
|
| 854 |
+
rag_data = rag_resp
|
| 855 |
+
tools_used.append("rag")
|
| 856 |
+
reasoning_trace.append({
|
| 857 |
+
"step": "tool_execution",
|
| 858 |
+
"tool": "rag",
|
| 859 |
+
"hit_count": len(self._extract_hits(rag_resp)),
|
| 860 |
+
"summary": self._summarize_hits(rag_resp, limit=2)
|
| 861 |
+
})
|
| 862 |
+
# Extract snippets for prompt
|
| 863 |
+
if isinstance(rag_resp, dict):
|
| 864 |
+
hits = rag_resp.get("results") or rag_resp.get("hits") or []
|
| 865 |
+
for h in hits[:5]:
|
| 866 |
+
txt = h.get("text") or h.get("content") or str(h)
|
| 867 |
+
collected_data.append(f"[RAG] {txt}")
|
| 868 |
+
|
| 869 |
+
elif tool_name == "web":
|
| 870 |
+
if parallel_tasks.get("web") and query == web_parallel_query:
|
| 871 |
+
web_resp = await parallel_tasks["web"]
|
| 872 |
+
tool_traces.append({"tool": "web", "response": web_resp, "note": "parallel"})
|
| 873 |
+
else:
|
| 874 |
+
web_resp = await self.mcp.call_web(req.tenant_id, query)
|
| 875 |
+
tool_traces.append({"tool": "web", "response": web_resp})
|
| 876 |
+
web_data = web_resp
|
| 877 |
+
tools_used.append("web")
|
| 878 |
+
reasoning_trace.append({
|
| 879 |
+
"step": "tool_execution",
|
| 880 |
+
"tool": "web",
|
| 881 |
+
"hit_count": len(self._extract_hits(web_resp)),
|
| 882 |
+
"summary": self._summarize_hits(web_resp, limit=2)
|
| 883 |
+
})
|
| 884 |
+
# Extract snippets for prompt
|
| 885 |
+
if isinstance(web_resp, dict):
|
| 886 |
+
hits = web_resp.get("results") or web_resp.get("items") or []
|
| 887 |
+
for h in hits[:5]:
|
| 888 |
+
title = h.get("title") or h.get("headline") or ""
|
| 889 |
+
snippet = h.get("snippet") or h.get("summary") or h.get("text") or ""
|
| 890 |
+
url = h.get("url") or h.get("link") or ""
|
| 891 |
+
collected_data.append(f"[WEB] {title}\n{snippet}\nSource: {url}")
|
| 892 |
+
|
| 893 |
+
elif tool_name == "admin":
|
| 894 |
+
admin_resp = await self.mcp.call_admin(req.tenant_id, query)
|
| 895 |
+
tool_traces.append({"tool": "admin", "response": admin_resp})
|
| 896 |
+
admin_data = admin_resp
|
| 897 |
+
tools_used.append("admin")
|
| 898 |
+
collected_data.append(f"[ADMIN] {json.dumps(admin_resp)}")
|
| 899 |
+
reasoning_trace.append({
|
| 900 |
+
"step": "tool_execution",
|
| 901 |
+
"tool": "admin",
|
| 902 |
+
"status": "completed"
|
| 903 |
+
})
|
| 904 |
+
|
| 905 |
+
elif tool_name == "llm":
|
| 906 |
+
# LLM is always last - synthesize all collected data
|
| 907 |
+
break
|
| 908 |
+
|
| 909 |
+
except Exception as e:
|
| 910 |
+
tool_traces.append({"tool": tool_name, "error": str(e)})
|
| 911 |
+
# Continue with other tools even if one fails
|
| 912 |
+
reasoning_trace.append({
|
| 913 |
+
"step": "error",
|
| 914 |
+
"tool": tool_name,
|
| 915 |
+
"error": str(e)
|
| 916 |
+
})
|
| 917 |
+
|
| 918 |
+
# Build comprehensive prompt with all collected data
|
| 919 |
+
data_section = "\n---\n".join(collected_data) if collected_data else ""
|
| 920 |
+
|
| 921 |
+
# Build final prompt
|
| 922 |
if data_section:
|
| 923 |
prompt = (
|
| 924 |
f"You are an assistant helping tenant {req.tenant_id}.\n\n"
|
| 925 |
+
f"## Information Collected\n"
|
| 926 |
+
f"The following details have been gathered from multiple reliable sources:\n"
|
| 927 |
f"{data_section}\n\n"
|
| 928 |
+
f"## User Request\n"
|
| 929 |
+
f"{req.message}\n\n"
|
| 930 |
+
f"## Your Task\n"
|
| 931 |
+
f"Use the information above to directly address the user's request. "
|
| 932 |
+
f"Focus on giving the user exactly what they need—clear guidance, accurate facts, "
|
| 933 |
+
f"and practical steps whenever possible. If the information is incomplete, explain "
|
| 934 |
+
f"what can and cannot be concluded from the available data."
|
| 935 |
)
|
| 936 |
+
|
| 937 |
else:
|
| 938 |
# No data collected, just answer the question
|
| 939 |
prompt = req.message
|
| 940 |
|
| 941 |
# Final LLM synthesis
|
| 942 |
try:
|
| 943 |
+
llm_start = time.time()
|
| 944 |
llm_out = await self.llm.simple_call(prompt, temperature=req.temperature)
|
| 945 |
+
llm_latency_ms = int((time.time() - llm_start) * 1000)
|
| 946 |
+
tools_used.append("llm")
|
| 947 |
+
|
| 948 |
+
estimated_tokens = len(llm_out) // 4 + len(prompt) // 4
|
| 949 |
+
total_tokens += estimated_tokens
|
| 950 |
+
|
| 951 |
+
self.analytics.log_tool_usage(
|
| 952 |
+
tenant_id=req.tenant_id,
|
| 953 |
+
tool_name="llm",
|
| 954 |
+
latency_ms=llm_latency_ms,
|
| 955 |
+
tokens_used=estimated_tokens,
|
| 956 |
+
success=True,
|
| 957 |
+
user_id=req.user_id
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
total_latency_ms = int((time.time() - start_time) * 1000)
|
| 961 |
+
self.analytics.log_agent_query(
|
| 962 |
+
tenant_id=req.tenant_id,
|
| 963 |
+
message_preview=req.message[:200],
|
| 964 |
+
intent="multi_step",
|
| 965 |
+
tools_used=tools_used,
|
| 966 |
+
total_tokens=total_tokens,
|
| 967 |
+
total_latency_ms=total_latency_ms,
|
| 968 |
+
success=True,
|
| 969 |
+
user_id=req.user_id
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
return AgentResponse(
|
| 973 |
text=llm_out,
|
| 974 |
decision=decision,
|
| 975 |
tool_traces=tool_traces,
|
| 976 |
reasoning_trace=reasoning_trace + [{
|
| 977 |
"step": "llm_response",
|
| 978 |
+
"mode": "multi_step_parallel" if parallel_step else "multi_step",
|
| 979 |
+
"latency_ms": llm_latency_ms,
|
| 980 |
+
"estimated_tokens": estimated_tokens
|
| 981 |
}]
|
| 982 |
)
|
| 983 |
except Exception as e:
|
|
|
|
| 1023 |
snippets.append(f"{title}\n{snippet}\nSource: {url}")
|
| 1024 |
|
| 1025 |
snippet_text = "\n---\n".join(snippets) or ""
|
| 1026 |
+
# prompt = (
|
| 1027 |
+
# f"You are an assistant with access to recent web search results. Use the following results to answer.\n{snippet_text}\n\n"
|
| 1028 |
+
# f"User question: {req.message}\nAnswer succinctly and indicate which results you used."
|
| 1029 |
+
# )
|
| 1030 |
prompt = (
|
| 1031 |
+
f"You are an assistant with access to recent web search results.\n\n"
|
| 1032 |
+
f"## Search Results\n"
|
| 1033 |
+
f"{snippet_text}\n\n"
|
| 1034 |
+
f"## User Question\n"
|
| 1035 |
+
f"{req.message}\n\n"
|
| 1036 |
+
f"## Your Task\n"
|
| 1037 |
+
f"Provide a clear, accurate, and succinct answer based on the search results above. "
|
| 1038 |
+
f"Indicate which results you used in your reasoning."
|
| 1039 |
)
|
| 1040 |
+
|
| 1041 |
return prompt
|
| 1042 |
|
| 1043 |
@staticmethod
|
|
|
|
| 1057 |
summaries.append(snippet[:160])
|
| 1058 |
return summaries
|
| 1059 |
|
| 1060 |
+
async def run_parallel_tools(self, tasks: Dict[str, Any]) -> Dict[str, Any]:
|
| 1061 |
+
"""
|
| 1062 |
+
Run multiple tools in parallel using asyncio.gather.
|
| 1063 |
+
|
| 1064 |
+
Args:
|
| 1065 |
+
tasks: Dictionary mapping tool names to coroutines, e.g.:
|
| 1066 |
+
{"rag": rag_coro, "web": web_coro}
|
| 1067 |
+
|
| 1068 |
+
Returns:
|
| 1069 |
+
Dictionary mapping tool names to results, e.g.:
|
| 1070 |
+
{"rag": rag_result, "web": web_result}
|
| 1071 |
+
Exceptions are returned as values if a tool fails.
|
| 1072 |
+
"""
|
| 1073 |
+
if not tasks:
|
| 1074 |
+
return {}
|
| 1075 |
+
|
| 1076 |
+
names = list(tasks.keys())
|
| 1077 |
+
coros = [tasks[name] for name in names]
|
| 1078 |
+
|
| 1079 |
+
# Run all coroutines in parallel, return exceptions instead of raising
|
| 1080 |
+
results = await asyncio.gather(*coros, return_exceptions=True)
|
| 1081 |
+
|
| 1082 |
+
return {names[i]: results[i] for i in range(len(names))}
|
| 1083 |
+
|
| 1084 |
@staticmethod
|
| 1085 |
def _first_query_for_tool(steps: List[Dict[str, Any]], tool_name: str, default_query: str) -> Optional[str]:
|
| 1086 |
for step in steps:
|
backend/api/services/result_merger.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Result Merger Utility
|
| 3 |
+
|
| 4 |
+
Merges and ranks results from parallel tool execution (RAG + Web).
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from typing import List, Dict, Any, Optional
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def merge_parallel_results(results: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 11 |
+
"""
|
| 12 |
+
Merge results from parallel tool execution (RAG + Web).
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
results: Dictionary with keys like "rag" and "web" containing tool outputs
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
List of merged context entries, sorted by score (descending)
|
| 19 |
+
"""
|
| 20 |
+
final_context = []
|
| 21 |
+
|
| 22 |
+
# Extract RAG results
|
| 23 |
+
if "rag" in results and results["rag"]:
|
| 24 |
+
rag_data = results["rag"]
|
| 25 |
+
|
| 26 |
+
# Handle different RAG response formats
|
| 27 |
+
if isinstance(rag_data, dict):
|
| 28 |
+
hits = rag_data.get("results") or rag_data.get("hits") or []
|
| 29 |
+
elif isinstance(rag_data, list):
|
| 30 |
+
hits = rag_data
|
| 31 |
+
else:
|
| 32 |
+
hits = []
|
| 33 |
+
|
| 34 |
+
for hit in hits:
|
| 35 |
+
if isinstance(hit, dict):
|
| 36 |
+
content = hit.get("text") or hit.get("content") or str(hit)
|
| 37 |
+
score = hit.get("score", 0.0)
|
| 38 |
+
doc_id = hit.get("doc_id") or hit.get("id")
|
| 39 |
+
source = hit.get("source") or hit.get("url") or "internal_doc"
|
| 40 |
+
else:
|
| 41 |
+
content = str(hit)
|
| 42 |
+
score = 0.5 # Default score for non-dict hits
|
| 43 |
+
doc_id = None
|
| 44 |
+
source = "internal_doc"
|
| 45 |
+
|
| 46 |
+
if content:
|
| 47 |
+
final_context.append({
|
| 48 |
+
"source": "internal_policy",
|
| 49 |
+
"text": content,
|
| 50 |
+
"score": float(score),
|
| 51 |
+
"doc_id": doc_id,
|
| 52 |
+
"source_url": source if isinstance(source, str) else None
|
| 53 |
+
})
|
| 54 |
+
|
| 55 |
+
# Extract Web results
|
| 56 |
+
if "web" in results and results["web"]:
|
| 57 |
+
web_data = results["web"]
|
| 58 |
+
|
| 59 |
+
# Handle different Web response formats
|
| 60 |
+
if isinstance(web_data, dict):
|
| 61 |
+
items = web_data.get("results") or web_data.get("items") or []
|
| 62 |
+
elif isinstance(web_data, list):
|
| 63 |
+
items = web_data
|
| 64 |
+
else:
|
| 65 |
+
items = []
|
| 66 |
+
|
| 67 |
+
for item in items:
|
| 68 |
+
if isinstance(item, dict):
|
| 69 |
+
title = item.get("title") or item.get("headline") or ""
|
| 70 |
+
snippet = item.get("snippet") or item.get("summary") or item.get("text") or ""
|
| 71 |
+
url = item.get("url") or item.get("link") or ""
|
| 72 |
+
# Web results get a baseline confidence score
|
| 73 |
+
score = item.get("score", 0.5)
|
| 74 |
+
else:
|
| 75 |
+
title = ""
|
| 76 |
+
snippet = str(item)
|
| 77 |
+
url = ""
|
| 78 |
+
score = 0.5
|
| 79 |
+
|
| 80 |
+
if snippet or title:
|
| 81 |
+
# Combine title and snippet for better context
|
| 82 |
+
text = f"{title}\n{snippet}" if title else snippet
|
| 83 |
+
final_context.append({
|
| 84 |
+
"source": "live_web",
|
| 85 |
+
"text": text,
|
| 86 |
+
"score": float(score),
|
| 87 |
+
"url": url,
|
| 88 |
+
"title": title
|
| 89 |
+
})
|
| 90 |
+
|
| 91 |
+
# Sort by score descending (highest relevance first)
|
| 92 |
+
final_context.sort(key=lambda x: x["score"], reverse=True)
|
| 93 |
+
|
| 94 |
+
return final_context
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def format_merged_context_for_prompt(merged_context: List[Dict[str, Any]],
|
| 98 |
+
max_items: int = 10) -> str:
|
| 99 |
+
"""
|
| 100 |
+
Format merged context into a readable prompt section.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
merged_context: List of merged context entries from merge_parallel_results
|
| 104 |
+
max_items: Maximum number of items to include
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Formatted string ready for LLM prompt
|
| 108 |
+
"""
|
| 109 |
+
if not merged_context:
|
| 110 |
+
return ""
|
| 111 |
+
|
| 112 |
+
sections = []
|
| 113 |
+
for entry in merged_context[:max_items]:
|
| 114 |
+
source_label = entry.get("source", "unknown")
|
| 115 |
+
text = entry.get("text", "")
|
| 116 |
+
score = entry.get("score", 0.0)
|
| 117 |
+
|
| 118 |
+
# Format based on source type
|
| 119 |
+
if source_label == "internal_policy":
|
| 120 |
+
source_url = entry.get("source_url")
|
| 121 |
+
if source_url:
|
| 122 |
+
sections.append(f"[INTERNAL DOCUMENT - {source_url}]\n{text}")
|
| 123 |
+
else:
|
| 124 |
+
sections.append(f"[INTERNAL DOCUMENT]\n{text}")
|
| 125 |
+
elif source_label == "live_web":
|
| 126 |
+
url = entry.get("url", "")
|
| 127 |
+
title = entry.get("title", "")
|
| 128 |
+
if url:
|
| 129 |
+
sections.append(f"[WEB SOURCE - {url}]\n{title}\n{text}")
|
| 130 |
+
else:
|
| 131 |
+
sections.append(f"[WEB SOURCE]\n{title}\n{text}")
|
| 132 |
+
else:
|
| 133 |
+
sections.append(f"[{source_label.upper()}]\n{text}")
|
| 134 |
+
|
| 135 |
+
return "\n\n---\n\n".join(sections)
|
| 136 |
+
|
backend/api/services/tool_selector.py
CHANGED
|
@@ -80,10 +80,13 @@ class ToolSelector:
|
|
| 80 |
# ---------------------------------
|
| 81 |
# 6. Use LLM to enhance plan if we have partial steps or complex query
|
| 82 |
# ---------------------------------
|
|
|
|
|
|
|
|
|
|
| 83 |
if self.llm_client and (needs_multiple or (needs_rag and needs_web) or len(steps) == 0):
|
| 84 |
plan_prompt = f"""
|
| 85 |
You are an enterprise MCP agent.
|
| 86 |
-
You can select MULTIPLE tools in sequence to provide comprehensive answers.
|
| 87 |
|
| 88 |
TOOLS:
|
| 89 |
- rag → private knowledge retrieval (use for internal/company docs)
|
|
@@ -101,8 +104,22 @@ Determine which tools are needed. You can select:
|
|
| 101 |
- Web + LLM (public fact questions)
|
| 102 |
- RAG + Web + LLM (comprehensive questions needing both sources)
|
| 103 |
|
| 104 |
-
|
|
|
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
[
|
| 107 |
{{"tool": "rag", "reason": "Need internal documentation"}},
|
| 108 |
{{"tool": "web", "reason": "Need current public information"}},
|
|
@@ -125,27 +142,96 @@ Only return the JSON array. Do not include markdown formatting.
|
|
| 125 |
|
| 126 |
steps_json = json.loads(out)
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
-
# If LLM planning fails,
|
| 135 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
steps = []
|
| 137 |
|
| 138 |
# ---------------------------------
|
| 139 |
-
# 7.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
# ---------------------------------
|
| 141 |
-
if not steps or steps[-1]["tool"
|
| 142 |
steps.append(step("llm", {
|
| 143 |
"rag_data": rag_results if rag_has_data else None,
|
| 144 |
"query": text
|
| 145 |
}))
|
| 146 |
|
| 147 |
# Build reason string showing the tool sequence
|
| 148 |
-
tool_names = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
reason = f"multi-tool plan: {' → '.join(tool_names)} | scores={tool_scores}"
|
| 150 |
|
| 151 |
return _multi_step(steps, reason)
|
|
|
|
| 80 |
# ---------------------------------
|
| 81 |
# 6. Use LLM to enhance plan if we have partial steps or complex query
|
| 82 |
# ---------------------------------
|
| 83 |
+
# Check if we should use parallel execution (both RAG and Web needed)
|
| 84 |
+
should_parallel = needs_rag and needs_web and (needs_multiple or rag_score >= 0.55 and web_score >= 0.55)
|
| 85 |
+
|
| 86 |
if self.llm_client and (needs_multiple or (needs_rag and needs_web) or len(steps) == 0):
|
| 87 |
plan_prompt = f"""
|
| 88 |
You are an enterprise MCP agent.
|
| 89 |
+
You can select MULTIPLE tools in sequence OR in parallel to provide comprehensive answers.
|
| 90 |
|
| 91 |
TOOLS:
|
| 92 |
- rag → private knowledge retrieval (use for internal/company docs)
|
|
|
|
| 104 |
- Web + LLM (public fact questions)
|
| 105 |
- RAG + Web + LLM (comprehensive questions needing both sources)
|
| 106 |
|
| 107 |
+
IMPORTANT: If the query needs BOTH internal docs (RAG) AND current/live info (Web),
|
| 108 |
+
you can mark them for parallel execution by using a "parallel" step.
|
| 109 |
|
| 110 |
+
Return a JSON list describing the steps. For parallel execution, use:
|
| 111 |
+
[
|
| 112 |
+
{{
|
| 113 |
+
"parallel": {{
|
| 114 |
+
"rag": "query for internal docs",
|
| 115 |
+
"web": "query for live info"
|
| 116 |
+
}},
|
| 117 |
+
"reason": "Need both internal and live information simultaneously"
|
| 118 |
+
}},
|
| 119 |
+
{{"tool": "llm", "reason": "Synthesize all information"}}
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
For sequential execution, use:
|
| 123 |
[
|
| 124 |
{{"tool": "rag", "reason": "Need internal documentation"}},
|
| 125 |
{{"tool": "web", "reason": "Need current public information"}},
|
|
|
|
| 142 |
|
| 143 |
steps_json = json.loads(out)
|
| 144 |
|
| 145 |
+
# Check if LLM returned a parallel step
|
| 146 |
+
has_parallel = any("parallel" in s for s in steps_json)
|
| 147 |
+
|
| 148 |
+
if has_parallel:
|
| 149 |
+
# Extract parallel step and convert to our format
|
| 150 |
+
parallel_step = None
|
| 151 |
+
other_steps = []
|
| 152 |
+
for s in steps_json:
|
| 153 |
+
if "parallel" in s:
|
| 154 |
+
parallel_step = {"parallel": s["parallel"]}
|
| 155 |
+
elif s.get("tool") != "llm":
|
| 156 |
+
other_steps.append(step(s["tool"], {"query": text}))
|
| 157 |
+
|
| 158 |
+
if parallel_step:
|
| 159 |
+
steps = [parallel_step] + other_steps
|
| 160 |
+
else:
|
| 161 |
+
# Fallback: convert to regular steps
|
| 162 |
+
steps = [
|
| 163 |
+
step(s["tool"], {"query": text})
|
| 164 |
+
for s in steps_json if s.get("tool") != "llm"
|
| 165 |
+
]
|
| 166 |
+
else:
|
| 167 |
+
# Replace steps with LLM-planned steps (excluding LLM, we'll add it at end)
|
| 168 |
+
steps = [
|
| 169 |
+
step(s["tool"], {"query": text})
|
| 170 |
+
for s in steps_json if s.get("tool") != "llm"
|
| 171 |
+
]
|
| 172 |
except Exception as e:
|
| 173 |
+
# If LLM planning fails, check if we should create parallel step manually
|
| 174 |
+
if should_parallel and needs_rag and needs_web:
|
| 175 |
+
# Create parallel step manually
|
| 176 |
+
steps = [{
|
| 177 |
+
"parallel": {
|
| 178 |
+
"rag": text,
|
| 179 |
+
"web": text
|
| 180 |
+
}
|
| 181 |
+
}]
|
| 182 |
+
elif not steps:
|
| 183 |
steps = []
|
| 184 |
|
| 185 |
# ---------------------------------
|
| 186 |
+
# 7. If we have both RAG and Web but no parallel step, consider creating one
|
| 187 |
+
# ---------------------------------
|
| 188 |
+
if should_parallel and needs_rag and needs_web:
|
| 189 |
+
# Check if we already have a parallel step
|
| 190 |
+
has_parallel = any("parallel" in s for s in steps)
|
| 191 |
+
if not has_parallel:
|
| 192 |
+
# Replace sequential RAG and Web steps with a parallel step
|
| 193 |
+
new_steps = []
|
| 194 |
+
rag_query = text
|
| 195 |
+
web_query = text
|
| 196 |
+
|
| 197 |
+
# Extract queries from existing steps if available
|
| 198 |
+
for s in steps:
|
| 199 |
+
if s.get("tool") == "rag":
|
| 200 |
+
rag_query = s.get("input", {}).get("query", text)
|
| 201 |
+
elif s.get("tool") == "web":
|
| 202 |
+
web_query = s.get("input", {}).get("query", text)
|
| 203 |
+
|
| 204 |
+
# Create parallel step
|
| 205 |
+
new_steps.append({
|
| 206 |
+
"parallel": {
|
| 207 |
+
"rag": rag_query,
|
| 208 |
+
"web": web_query
|
| 209 |
+
}
|
| 210 |
+
})
|
| 211 |
+
|
| 212 |
+
# Keep other non-RAG/Web steps
|
| 213 |
+
for s in steps:
|
| 214 |
+
if s.get("tool") not in ["rag", "web"]:
|
| 215 |
+
new_steps.append(s)
|
| 216 |
+
|
| 217 |
+
steps = new_steps
|
| 218 |
+
|
| 219 |
+
# ---------------------------------
|
| 220 |
+
# 8. Always end with LLM synthesis
|
| 221 |
# ---------------------------------
|
| 222 |
+
if not steps or (isinstance(steps[-1], dict) and steps[-1].get("tool") != "llm" and "parallel" not in steps[-1]):
|
| 223 |
steps.append(step("llm", {
|
| 224 |
"rag_data": rag_results if rag_has_data else None,
|
| 225 |
"query": text
|
| 226 |
}))
|
| 227 |
|
| 228 |
# Build reason string showing the tool sequence
|
| 229 |
+
tool_names = []
|
| 230 |
+
for s in steps:
|
| 231 |
+
if "parallel" in s:
|
| 232 |
+
tool_names.append("parallel(RAG+Web)")
|
| 233 |
+
elif isinstance(s, dict) and "tool" in s:
|
| 234 |
+
tool_names.append(s["tool"])
|
| 235 |
reason = f"multi-tool plan: {' → '.join(tool_names)} | scores={tool_scores}"
|
| 236 |
|
| 237 |
return _multi_step(steps, reason)
|
data/analytics.db
CHANGED
|
Binary files a/data/analytics.db and b/data/analytics.db differ
|
|
|