Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,17 @@
|
|
| 1 |
-
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
import joblib
|
|
|
|
| 4 |
import nltk
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
from nltk.stem import PorterStemmer
|
| 7 |
-
import re
|
| 8 |
|
|
|
|
| 9 |
nltk.download('stopwords')
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Load the model pipeline
|
| 14 |
pipeline = joblib.load('spam_classifier_pipeline.joblib')
|
| 15 |
|
| 16 |
-
|
| 17 |
-
subject: str
|
| 18 |
-
body: str
|
| 19 |
-
|
| 20 |
def preprocess_text(text):
|
| 21 |
text = text.lower()
|
| 22 |
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
|
@@ -27,12 +22,45 @@ def preprocess_text(text):
|
|
| 27 |
words = [stemmer.stem(word) for word in words]
|
| 28 |
return ' '.join(words)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
prediction = pipeline.predict([
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
return {"message": "Spam Classification API"}
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
| 2 |
import joblib
|
| 3 |
+
import re
|
| 4 |
import nltk
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
from nltk.stem import PorterStemmer
|
|
|
|
| 7 |
|
| 8 |
+
# Download NLTK stopwords
|
| 9 |
nltk.download('stopwords')
|
| 10 |
|
| 11 |
+
# Load the saved pipeline
|
|
|
|
|
|
|
| 12 |
pipeline = joblib.load('spam_classifier_pipeline.joblib')
|
| 13 |
|
| 14 |
+
# Preprocessing function (must match your training preprocessing)
|
|
|
|
|
|
|
|
|
|
| 15 |
def preprocess_text(text):
|
| 16 |
text = text.lower()
|
| 17 |
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
|
|
|
| 22 |
words = [stemmer.stem(word) for word in words]
|
| 23 |
return ' '.join(words)
|
| 24 |
|
| 25 |
+
# Prediction function
|
| 26 |
+
def classify_email(subject, body):
|
| 27 |
+
combined_text = preprocess_text(f"{subject} {body}")
|
| 28 |
+
prediction = pipeline.predict([combined_text])[0]
|
| 29 |
+
labels = ["ham", "not_spam", "spam"]
|
| 30 |
+
return labels[prediction]
|
| 31 |
+
|
| 32 |
+
# Create Gradio interface
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("# 📧 Spam Email Classifier")
|
| 35 |
+
gr.Markdown("Classify emails into **ham (personal)**, **not_spam (promotional)**, or **spam (junk)**")
|
| 36 |
+
|
| 37 |
+
with gr.Row():
|
| 38 |
+
with gr.Column():
|
| 39 |
+
subject = gr.Textbox(label="Email Subject",
|
| 40 |
+
placeholder="e.g., 'Win a free prize!'")
|
| 41 |
+
body = gr.Textbox(label="Email Body",
|
| 42 |
+
placeholder="e.g., 'Click here to claim...'",
|
| 43 |
+
lines=5)
|
| 44 |
+
submit_btn = gr.Button("Classify Email")
|
| 45 |
+
|
| 46 |
+
with gr.Column():
|
| 47 |
+
output = gr.Label(label="Prediction")
|
| 48 |
+
examples = gr.Examples(
|
| 49 |
+
examples=[
|
| 50 |
+
["Meeting tomorrow", "Hi team, let's discuss the project at 10 AM."],
|
| 51 |
+
["Exclusive offer!", "Get 50% off on our new product. Limited time!"],
|
| 52 |
+
["You won $1,000,000!", "Claim your prize now by clicking this link!"],
|
| 53 |
+
["Newsletter", "This month's updates and new features"],
|
| 54 |
+
["Urgent: Account Suspension", "Your account will be closed unless you verify now"]
|
| 55 |
+
],
|
| 56 |
+
inputs=[subject, body]
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
submit_btn.click(
|
| 60 |
+
fn=classify_email,
|
| 61 |
+
inputs=[subject, body],
|
| 62 |
+
outputs=output
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
# For Hugging Face Spaces deployment
|
| 66 |
+
demo.launch()
|
|
|