Upload gradio_app.py with huggingface_hub
Browse files- gradio_app.py +163 -0
gradio_app.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import importlib.util
|
| 5 |
+
from wearable_anomaly_detector import WearableAnomalyDetector
|
| 6 |
+
|
| 7 |
+
BASE_DIR = Path(__file__).parent
|
| 8 |
+
MODEL_DIR = BASE_DIR / "checkpoints" / "phase2" / "exp_factor_balanced"
|
| 9 |
+
LLM_INPUT_DIR = BASE_DIR / "demo_llm_inputs"
|
| 10 |
+
LLM_MANIFEST = LLM_INPUT_DIR / "manifest.json"
|
| 11 |
+
PATCHAD_CASE_DIR = BASE_DIR / "demo_patchad_cases"
|
| 12 |
+
PATCHAD_CASE_MANIFEST = PATCHAD_CASE_DIR / "manifest.json"
|
| 13 |
+
|
| 14 |
+
SAMPLES = {
|
| 15 |
+
"示例: 正常": BASE_DIR / "test_data" / "example_window.json",
|
| 16 |
+
"示例: 短期异常": BASE_DIR / "data_storage" / "users" / "demo_anomaly.jsonl",
|
| 17 |
+
"示例: 长期异常": BASE_DIR / "data_storage" / "users" / "demo_pattern.jsonl",
|
| 18 |
+
"示例: 缺失数据": BASE_DIR / "data_storage" / "users" / "demo_missing.jsonl",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
LLM_CASES = {}
|
| 22 |
+
if LLM_MANIFEST.exists():
|
| 23 |
+
manifest = json.loads(LLM_MANIFEST.read_text(encoding="utf-8"))
|
| 24 |
+
for item in manifest:
|
| 25 |
+
display = item.get("title") or item.get("case_id")
|
| 26 |
+
file_name = item.get("file")
|
| 27 |
+
if display and file_name:
|
| 28 |
+
LLM_CASES[display] = LLM_INPUT_DIR / file_name
|
| 29 |
+
|
| 30 |
+
PATCHAD_CASES = {}
|
| 31 |
+
if PATCHAD_CASE_MANIFEST.exists():
|
| 32 |
+
manifest = json.loads(PATCHAD_CASE_MANIFEST.read_text(encoding="utf-8"))
|
| 33 |
+
for item in manifest:
|
| 34 |
+
display = item.get("title")
|
| 35 |
+
file_name = item.get("file")
|
| 36 |
+
if display and file_name:
|
| 37 |
+
PATCHAD_CASES[display] = PATCHAD_CASE_DIR / file_name
|
| 38 |
+
|
| 39 |
+
formatter_spec = importlib.util.spec_from_file_location(
|
| 40 |
+
"formatter", BASE_DIR / "utils" / "formatter.py"
|
| 41 |
+
)
|
| 42 |
+
formatter_module = importlib.util.module_from_spec(formatter_spec)
|
| 43 |
+
formatter_spec.loader.exec_module(formatter_module)
|
| 44 |
+
AnomalyFormatter = formatter_module.AnomalyFormatter
|
| 45 |
+
|
| 46 |
+
detector = WearableAnomalyDetector(model_dir=MODEL_DIR, device="cpu")
|
| 47 |
+
formatter = AnomalyFormatter()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def load_sample(path: Path):
|
| 51 |
+
if path.suffix == ".jsonl":
|
| 52 |
+
data = [json.loads(line) for line in path.read_text(encoding="utf-8").splitlines() if line.strip()]
|
| 53 |
+
else:
|
| 54 |
+
data = json.loads(path.read_text(encoding="utf-8"))
|
| 55 |
+
if isinstance(data, dict):
|
| 56 |
+
data = data.get("records") or data.get("data") or [data]
|
| 57 |
+
if not isinstance(data, list):
|
| 58 |
+
raise ValueError("样例文件需包含数组")
|
| 59 |
+
return data
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def infer(sample_name: str):
|
| 63 |
+
window = load_sample(SAMPLES[sample_name])
|
| 64 |
+
realtime = detector.detect_realtime(window, update_baseline=False, return_details=True)
|
| 65 |
+
baseline_info = {
|
| 66 |
+
"baseline_mean": window[0]["features"].get("baseline_hrv_mean", 75.0),
|
| 67 |
+
"baseline_std": window[0]["features"].get("baseline_hrv_std", 5.0),
|
| 68 |
+
"current_value": sum(pt["features"].get("hrv_rmssd", 0) for pt in window) / len(window),
|
| 69 |
+
"deviation_pct": 0.0,
|
| 70 |
+
}
|
| 71 |
+
text = formatter.format_for_llm(realtime, baseline_info=baseline_info)
|
| 72 |
+
return json.dumps(realtime, ensure_ascii=False, indent=2), text
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def show_llm_input(case_name: str):
|
| 76 |
+
if not LLM_CASES:
|
| 77 |
+
return {}, "当前未提供LLM输入示例。"
|
| 78 |
+
path = LLM_CASES[case_name]
|
| 79 |
+
data = json.loads(path.read_text(encoding="utf-8"))
|
| 80 |
+
messages = data.get("messages", [])
|
| 81 |
+
system_text = ""
|
| 82 |
+
user_text = ""
|
| 83 |
+
if messages:
|
| 84 |
+
system_msg = next((m for m in messages if m.get("role") == "system"), {})
|
| 85 |
+
user_msg = next((m for m in messages if m.get("role") == "user"), {})
|
| 86 |
+
system_text = system_msg.get("content", "")
|
| 87 |
+
user_text = user_msg.get("content", "")
|
| 88 |
+
display_text = "## 系统提示\n"
|
| 89 |
+
display_text += (system_text or "(无)")
|
| 90 |
+
display_text += "\n\n---\n\n## 用户输入(Markdown)\n"
|
| 91 |
+
display_text += (user_text or "(无)")
|
| 92 |
+
return data, display_text
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def show_patchad_case(case_name: str):
|
| 96 |
+
if not PATCHAD_CASES:
|
| 97 |
+
return {}, {}, "当前未提供 PatchTrAD 示例。"
|
| 98 |
+
path = PATCHAD_CASES[case_name]
|
| 99 |
+
data = json.loads(path.read_text(encoding="utf-8"))
|
| 100 |
+
bundle = data.get("case_bundle", {})
|
| 101 |
+
summary = {
|
| 102 |
+
"sample": data.get("sample"),
|
| 103 |
+
"mode": data.get("mode"),
|
| 104 |
+
"precheck": data.get("precheck"),
|
| 105 |
+
"validation": bundle.get("validation"),
|
| 106 |
+
}
|
| 107 |
+
case_json = bundle.get("case", {})
|
| 108 |
+
llm_text = bundle.get("llm_input", "(无)")
|
| 109 |
+
return summary, case_json, llm_text
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
realtime_demo = gr.Interface(
|
| 113 |
+
fn=infer,
|
| 114 |
+
inputs=gr.Dropdown(choices=list(SAMPLES.keys()), value="示例: 正常", label="选择测试数据"),
|
| 115 |
+
outputs=[
|
| 116 |
+
gr.JSON(label="模型输出"),
|
| 117 |
+
gr.Markdown(label="LLM 文本"),
|
| 118 |
+
],
|
| 119 |
+
title="Wearable Anomaly Detector Demo",
|
| 120 |
+
description="选择预置数据(正常/短期异常/长期异常/缺失数据)即可查看时序模型输出及格式化LLM文本。",
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
llm_input_demo = gr.Interface(
|
| 124 |
+
fn=show_llm_input,
|
| 125 |
+
inputs=gr.Dropdown(
|
| 126 |
+
choices=list(LLM_CASES.keys()) or ["暂无示例"],
|
| 127 |
+
value=list(LLM_CASES.keys())[0] if LLM_CASES else "暂无示例",
|
| 128 |
+
label="选择LLM输入示例",
|
| 129 |
+
),
|
| 130 |
+
outputs=[
|
| 131 |
+
gr.JSON(label="messages JSON"),
|
| 132 |
+
gr.Markdown(label="完整用户输入"),
|
| 133 |
+
],
|
| 134 |
+
title="标准化LLM输入示例",
|
| 135 |
+
description="直接展示系统提示+用户输入的完整Markdown,便于在Hugging Face页面选择典型案例查看。",
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
demo = gr.TabbedInterface(
|
| 139 |
+
[
|
| 140 |
+
realtime_demo,
|
| 141 |
+
llm_input_demo,
|
| 142 |
+
gr.Interface(
|
| 143 |
+
fn=show_patchad_case,
|
| 144 |
+
inputs=gr.Dropdown(
|
| 145 |
+
choices=list(PATCHAD_CASES.keys()) or ["暂无示例"],
|
| 146 |
+
value=list(PATCHAD_CASES.keys())[0] if PATCHAD_CASES else "暂无示例",
|
| 147 |
+
label="选择 PatchTrAD 案例",
|
| 148 |
+
),
|
| 149 |
+
outputs=[
|
| 150 |
+
gr.JSON(label="摘要 / 预筛信息"),
|
| 151 |
+
gr.JSON(label="Case JSON"),
|
| 152 |
+
gr.Markdown(label="LLM 输入"),
|
| 153 |
+
],
|
| 154 |
+
title="PatchTrAD + build_case 案例",
|
| 155 |
+
description="从预置示例中选择模式A/B与不同数据样本,查看完整 case 与 LLM 输入。",
|
| 156 |
+
),
|
| 157 |
+
],
|
| 158 |
+
["实时窗口检测", "LLM输入示例", "PatchTrAD案例"],
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
demo.launch()
|
| 163 |
+
|