File size: 9,644 Bytes
bd11458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import gc
import os
import random
import time

import imageio
import torch
from diffusers.utils import load_image

from skyreels_v2_infer import DiffusionForcingPipeline
from skyreels_v2_infer.modules import download_model
from skyreels_v2_infer.pipelines import PromptEnhancer
from skyreels_v2_infer.pipelines.image2video_pipeline import resizecrop
from moviepy.editor import VideoFileClip


def get_video_num_frames_moviepy(video_path):
    with VideoFileClip(video_path) as clip:
        num_frames = 0
        for _ in clip.iter_frames():
            num_frames += 1
        return clip.size, num_frames


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--outdir", type=str, default="diffusion_forcing")
    parser.add_argument("--model_id", type=str, default="Skywork/SkyReels-V2-DF-1.3B-540P")
    parser.add_argument("--resolution", type=str, choices=["540P", "720P"])
    parser.add_argument("--num_frames", type=int, default=97)
    parser.add_argument("--image", type=str, default=None)
    parser.add_argument("--end_image", type=str, default=None)
    parser.add_argument("--video_path", type=str, default='')
    parser.add_argument("--ar_step", type=int, default=0)
    parser.add_argument("--causal_attention", action="store_true")
    parser.add_argument("--causal_block_size", type=int, default=1)
    parser.add_argument("--base_num_frames", type=int, default=97)
    parser.add_argument("--overlap_history", type=int, default=None)
    parser.add_argument("--addnoise_condition", type=int, default=0)
    parser.add_argument("--guidance_scale", type=float, default=6.0)
    parser.add_argument("--shift", type=float, default=8.0)
    parser.add_argument("--inference_steps", type=int, default=30)
    parser.add_argument("--use_usp", action="store_true")
    parser.add_argument("--offload", action="store_true")
    parser.add_argument("--fps", type=int, default=24)
    parser.add_argument("--seed", type=int, default=None)
    parser.add_argument(
        "--prompt",
        type=str,
        default="A woman in a leather jacket and sunglasses riding a vintage motorcycle through a desert highway at sunset, her hair blowing wildly in the wind as the motorcycle kicks up dust, with the golden sun casting long shadows across the barren landscape.",
    )
    parser.add_argument("--prompt_enhancer", action="store_true")
    parser.add_argument("--teacache", action="store_true")
    parser.add_argument(
        "--teacache_thresh",
        type=float,
        default=0.2,
        help="Higher speedup will cause to worse quality -- 0.1 for 2.0x speedup -- 0.2 for 3.0x speedup")
    parser.add_argument(
        "--use_ret_steps",
        action="store_true",
        help="Using Retention Steps will result in faster generation speed and better generation quality.")
    args = parser.parse_args()

    args.model_id = download_model(args.model_id)
    print("model_id:", args.model_id)

    assert (args.use_usp and args.seed is not None) or (not args.use_usp), "usp mode need seed"
    if args.seed is None:
        random.seed(time.time())
        args.seed = int(random.randrange(4294967294))

    if args.resolution == "540P":
        height = 544
        width = 960
    elif args.resolution == "720P":
        height = 720
        width = 1280
    else:
        raise ValueError(f"Invalid resolution: {args.resolution}")

    num_frames = args.num_frames
    fps = args.fps

    if num_frames > args.base_num_frames:
        assert (
            args.overlap_history is not None
        ), 'You are supposed to specify the "overlap_history" to support the long video generation. 17 and 37 are recommanded to set.'
    if args.addnoise_condition > 60:
        print(
            f'You have set "addnoise_condition" as {args.addnoise_condition}. The value is too large which can cause inconsistency in long video generation. The value is recommanded to set 20.'
        )

    guidance_scale = args.guidance_scale
    shift = args.shift
    
    negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"

    save_dir = os.path.join("result", args.outdir)
    os.makedirs(save_dir, exist_ok=True)
    local_rank = 0
    if args.use_usp:
        assert not args.prompt_enhancer, "`--prompt_enhancer` is not allowed if using `--use_usp`. We recommend running the skyreels_v2_infer/pipelines/prompt_enhancer.py script first to generate enhanced prompt before enabling the `--use_usp` parameter."
        from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment
        import torch.distributed as dist

        dist.init_process_group("nccl")
        local_rank = dist.get_rank()
        torch.cuda.set_device(dist.get_rank())
        device = "cuda"

        init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())

        initialize_model_parallel(
            sequence_parallel_degree=dist.get_world_size(),
            ring_degree=1,
            ulysses_degree=dist.get_world_size(),
        )

    prompt_input = args.prompt
    if args.prompt_enhancer and args.image is None:
        print(f"init prompt enhancer")
        prompt_enhancer = PromptEnhancer()
        prompt_input = prompt_enhancer(prompt_input)
        print(f"enhanced prompt: {prompt_input}")
        del prompt_enhancer
        gc.collect()
        torch.cuda.empty_cache()

    pipe = DiffusionForcingPipeline(
        args.model_id,
        dit_path=args.model_id,
        device=torch.device("cuda"),
        weight_dtype=torch.bfloat16,
        use_usp=args.use_usp,
        offload=args.offload,
    )

    if args.causal_attention:
        pipe.transformer.set_ar_attention(args.causal_block_size)
    
    if args.teacache:
        if args.ar_step > 0:
            num_steps = args.inference_steps + (((args.base_num_frames - 1) // 4 + 1) // args.causal_block_size - 1) * args.ar_step
            print('num_steps:', num_steps)
        else:
            num_steps = args.inference_steps
        pipe.transformer.initialize_teacache(enable_teacache=True, num_steps=num_steps, 
                                             teacache_thresh=args.teacache_thresh, use_ret_steps=args.use_ret_steps, 
                                             ckpt_dir=args.model_id)

    print(f"prompt:{prompt_input}")
    print(f"guidance_scale:{guidance_scale}")

    if os.path.exists(args.video_path):
        (v_width, v_height), input_num_frames = get_video_num_frames_moviepy(args.video_path)
        assert input_num_frames >= args.overlap_history, "The input video is too short."

        if v_height > v_width:
            width, height = height, width

        video_frames = pipe.extend_video(
            prompt=prompt_input,
            negative_prompt=negative_prompt,
            prefix_video_path=args.video_path,
            height=height,
            width=width,
            num_frames=num_frames,
            num_inference_steps=args.inference_steps,
            shift=shift,
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cuda").manual_seed(args.seed),
            overlap_history=args.overlap_history,
            addnoise_condition=args.addnoise_condition,
            base_num_frames=args.base_num_frames,
            ar_step=args.ar_step,
            causal_block_size=args.causal_block_size,
            fps=fps,
        )[0]
    else:
        if args.image:
            args.image = load_image(args.image)
            image_width, image_height = args.image.size
            if image_height > image_width:
                height, width = width, height
            args.image = resizecrop(args.image, height, width)
            if args.end_image:
                args.end_image = load_image(args.end_image)
                args.end_image = resizecrop(args.end_image, height, width)

        image = args.image.convert("RGB") if args.image else None
        end_image = args.end_image.convert("RGB") if args.end_image else None
        
        with torch.cuda.amp.autocast(dtype=pipe.transformer.dtype), torch.no_grad():
            video_frames = pipe(
                prompt=prompt_input,
                negative_prompt=negative_prompt,
                image=image,
                end_image=end_image,
                height=height,
                width=width,
                num_frames=num_frames,
                num_inference_steps=args.inference_steps,
                shift=shift,
                guidance_scale=guidance_scale,
                generator=torch.Generator(device="cuda").manual_seed(args.seed),
                overlap_history=args.overlap_history,
                addnoise_condition=args.addnoise_condition,
                base_num_frames=args.base_num_frames,
                ar_step=args.ar_step,
                causal_block_size=args.causal_block_size,
                fps=fps,
            )[0]

    if local_rank == 0:
        current_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
        video_out_file = f"{args.prompt[:100].replace('/','')}_{args.seed}_{current_time}.mp4"
        output_path = os.path.join(save_dir, video_out_file)
        imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])