Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,834 Bytes
2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 9c6a17f 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 ecf7f6e 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 9c6a17f 2945c35 ecf7f6e 2945c35 ecf7f6e 1fcb13f ecf7f6e 1fcb13f ecf7f6e 1fcb13f ecf7f6e 1fcb13f ecf7f6e 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 9c6a17f 2945c35 ecf7f6e 2945c35 1fcb13f 2945c35 14a25f4 1fcb13f 3ee5ad8 737e40d 2945c35 737e40d 14a25f4 737e40d f7f51a2 2945c35 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f 202241e c4a9342 202241e 1fcb13f f7f51a2 5275b4e f7f51a2 737e40d f7f51a2 1fcb13f 2945c35 1fcb13f 2945c35 1fcb13f c4a9342 2945c35 1fcb13f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from medcrab import MedCrabTranslator
import torch
import os
import sys
import tempfile
import shutil
from PIL import Image, ImageOps
import fitz
import re
import time
from io import StringIO, BytesIO
import spaces
# ==================== CONFIG ====================
OCR_MODEL_NAME = 'deepseek-ai/DeepSeek-OCR'
MODEL_CONFIGS = {
"Crab": {"base_size": 1024, "image_size": 640, "crop_mode": True},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
}
# ==================== LOAD MODELS ====================
print("🔄 Loading OCR model...")
ocr_tokenizer = AutoTokenizer.from_pretrained(OCR_MODEL_NAME, trust_remote_code=True)
try:
ocr_model = AutoModel.from_pretrained(
OCR_MODEL_NAME,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16,
trust_remote_code=True,
use_safetensors=True
)
print("✅ Using Flash Attention 2")
except (ImportError, ValueError):
print("⚠️ Flash Attention 2 not available, using eager attention")
ocr_model = AutoModel.from_pretrained(
OCR_MODEL_NAME,
attn_implementation='eager',
torch_dtype=torch.bfloat16,
trust_remote_code=True,
use_safetensors=True
)
ocr_model = ocr_model.eval()
print("🦀 Loading MedCrab translator...")
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = MedCrabTranslator(device=device)
print(f"✅ MedCrab translator loaded on {device}")
# ==================== TEXT CLEANING ====================
def clean_mathrm(text):
if not text:
return ""
def process_math_block(match):
math_content = match.group(1)
math_content = re.sub(r'\\mathrm\{([^}]*)\}', r'\1', math_content)
math_content = re.sub(r'\^\{([^}]+)\}', r'<sup>\1</sup>', math_content)
math_content = re.sub(r'\^([A-Za-z0-9+\-]+)', r'<sup>\1</sup>', math_content)
math_content = re.sub(r'_\{([^}]+)\}', r'<sub>\1</sub>', math_content)
math_content = re.sub(r'_([A-Za-z0-9+\-]+)', r'<sub>\1</sub>', math_content)
replacements = {
r'\times': '×', r'\pm': '±', r'\div': '÷', r'\cdot': '·',
r'\approx': '≈', r'\leq': '≤', r'\geq': '≥', r'\neq': '≠',
r'\rightarrow': '→', r'\leftarrow': '←',
r'\Rightarrow': '⇒', r'\Leftarrow': '⇐',
}
for latex_cmd, unicode_char in replacements.items():
math_content = math_content.replace(latex_cmd, unicode_char)
return math_content
text = re.sub(r'\\\((.+?)\\\)', process_math_block, text, flags=re.DOTALL)
def process_bracket_block(m):
class FakeMatch:
def __init__(self, content):
self.content = content
def group(self, n):
return self.content
content = process_math_block(FakeMatch(m.group(1)))
return '[' + content + ']'
text = re.sub(r'\\\[(.+?)\\\]', process_bracket_block, text, flags=re.DOTALL)
text = re.sub(r'\\mathrm\{([^}]*)\}', r'\1', text)
text = text.replace(r'\%', '%')
lines = text.split('\n')
cleaned_lines = [re.sub(r'[ \t]+', ' ', line).strip() for line in lines]
return '\n'.join(cleaned_lines).strip()
def clean_output(text, include_images=False, remove_labels=False):
if not text:
return ""
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
img_num = 0
for match in matches:
if '<|ref|>image<|/ref|>' in match[0]:
if include_images:
text = text.replace(match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
img_num += 1
else:
text = text.replace(match[0], '', 1)
else:
if remove_labels:
text = text.replace(match[0], '', 1)
else:
text = text.replace(match[0], match[1], 1)
return clean_mathrm(text).strip()
# ==================== OCR HELPERS ====================
@spaces.GPU
def ocr_process_image(image, mode="Crab"):
if image is None:
return "Error: Upload image"
device = "cuda" if torch.cuda.is_available() else "cpu"
ocr_model.to(device)
if image.mode in ('RGBA', 'LA', 'P'):
image = image.convert('RGB')
image = ImageOps.exif_transpose(image)
config = MODEL_CONFIGS[mode]
prompt = "<image>\n<|grounding|>Convert the document to markdown."
tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
image.save(tmp.name, 'JPEG', quality=95)
tmp.close()
out_dir = tempfile.mkdtemp()
stdout = sys.stdout
sys.stdout = StringIO()
try:
ocr_model.infer(
tokenizer=ocr_tokenizer,
prompt=prompt,
image_file=tmp.name,
output_path=out_dir,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"]
)
result = '\n'.join([l for l in sys.stdout.getvalue().split('\n')
if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
finally:
sys.stdout = stdout
try:
os.unlink(tmp.name)
except:
pass
shutil.rmtree(out_dir, ignore_errors=True)
if not result:
return "No text detected"
return clean_output(result, True, True)
def ocr_process_pdf(path, mode, page_num):
doc = fitz.open(path)
total_pages = len(doc)
if page_num < 1 or page_num > total_pages:
doc.close()
return f"Invalid page number. PDF has {total_pages} pages."
page = doc.load_page(page_num - 1)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
doc.close()
return ocr_process_image(img, mode)
def ocr_process_file(path, mode, page_num):
if not path:
return "Error: Upload file"
if path.lower().endswith('.pdf'):
return ocr_process_pdf(path, mode, page_num)
else:
return ocr_process_image(Image.open(path), mode)
# ==================== TRANSLATION HELPERS ====================
def split_by_sentences(text: str, max_words: int = 100):
def count_words(t):
return len(t.strip().split())
chunks = []
lines = text.split('\n')
i = 0
while i < len(lines):
line = lines[i]
empty_count = 0
if not line.strip():
while i < len(lines) and not lines[i].strip():
empty_count += 1
i += 1
if chunks:
prev_text, prev_newlines = chunks[-1]
chunks[-1] = (prev_text, prev_newlines + empty_count)
continue
line = line.strip()
is_last_line = (i == len(lines) - 1)
if count_words(line) <= max_words:
chunks.append((line, 0 if is_last_line else 1))
i += 1
continue
sentences = re.split(r'(?<=[.!?])\s+', line)
current_chunk = ""
current_words = 0
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
sentence_words = count_words(sentence)
if sentence_words > max_words:
if current_chunk:
chunks.append((current_chunk.strip(), 0))
current_chunk = ""
current_words = 0
sub_parts = re.split(r',\s*', sentence)
temp_chunk = ""
temp_words = 0
for part in sub_parts:
part_words = count_words(part)
if temp_words + part_words > max_words and temp_chunk:
chunks.append((temp_chunk.strip(), 0))
temp_chunk = part
temp_words = part_words
else:
if temp_chunk:
temp_chunk += ", " + part
else:
temp_chunk = part
temp_words += part_words
if temp_chunk.strip():
current_chunk = temp_chunk.strip()
current_words = temp_words
elif current_words + sentence_words <= max_words:
if current_chunk:
current_chunk += " " + sentence
else:
current_chunk = sentence
current_words += sentence_words
else:
chunks.append((current_chunk.strip(), 0))
current_chunk = sentence
current_words = sentence_words
if current_chunk.strip():
chunks.append((current_chunk.strip(), 0 if is_last_line else 1))
i += 1
return chunks
@spaces.GPU
def translate_chunk(chunk_text):
device = "cuda" if torch.cuda.is_available() else "cpu"
if hasattr(translator, 'model') and hasattr(translator.model, 'to'):
translator.model.to(device)
return translator.translate(chunk_text, max_new_tokens=2048).strip()
def streaming_translate(text: str):
if not text or not text.strip():
yield '<div style="padding:20px; color:#ff6b6b;">⚠️ Vui lòng nhập văn bản tiếng Anh để dịch.</div>'
return
chunks = split_by_sentences(text, max_words=100)
accumulated = ""
for i, (chunk_text, newline_count) in enumerate(chunks):
try:
translated = translate_chunk(chunk_text)
if accumulated and not accumulated.endswith('\n'):
accumulated += " " + translated
else:
accumulated += translated
chunk_start = len(accumulated) - len(translated)
for j in range(len(translated)):
current_display = accumulated[:chunk_start + j + 1]
html_output = f'<div style="padding:20px; line-height:1.8; font-size:15px; white-space:pre-wrap; font-family:Arial,sans-serif;">{current_display}</div>'
yield html_output
time.sleep(0.015)
if newline_count > 0:
actual_newlines = min(newline_count, 2)
accumulated += "\n" * actual_newlines
html_output = f'<div style="padding:20px; line-height:1.8; font-size:15px; white-space:pre-wrap; font-family:Arial,sans-serif;">{accumulated}</div>'
yield html_output
except Exception as e:
yield f'<div style="padding:20px; color:#ff6b6b;">❌ Lỗi dịch chunk {i+1}: {str(e)}</div>'
return
# ==================== UI HELPERS ====================
def load_image(file_path, page_num_str="1"):
if not file_path:
return None
try:
try:
page_num = int(page_num_str)
except (ValueError, TypeError):
page_num = 1
if file_path.lower().endswith('.pdf'):
doc = fitz.open(file_path)
page_idx = max(0, min(page_num - 1, len(doc) - 1))
page = doc.load_page(page_idx)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
doc.close()
return img
else:
return Image.open(file_path)
except Exception as e:
print(f"Error loading image: {e}")
return None
def get_pdf_page_count(file_path):
if not file_path or not file_path.lower().endswith('.pdf'):
return 1
try:
doc = fitz.open(file_path)
count = len(doc)
doc.close()
return count
except Exception as e:
print(f"Error reading PDF page count: {e}")
return 1
def update_page_info(file_path):
if not file_path:
return gr.update(label="Số trang (chỉ dùng cho PDF, mặc định: 1)")
if file_path.lower().endswith('.pdf'):
page_count = get_pdf_page_count(file_path)
return gr.update(
label=f"Số trang (PDF có {page_count} trang, nhập 1-{page_count})",
value="1"
)
return gr.update(
label="Số trang (chỉ dùng cho PDF, mặc định: 1)",
value="1"
)
# ==================== COMBINED OCR + TRANSLATION ====================
def ocr_and_translate_streaming(file_path, mode, page_num_str):
if not file_path:
yield '<div style="padding:20px; color:#ff6b6b;">⚠️ Vui lòng tải file lên trước!</div>'
return
yield '<div style="padding:20px; color:#4CAF50;">🔍 Đang quét OCR...</div>'
try:
try:
page_num = int(page_num_str)
except (ValueError, TypeError):
page_num = 1
markdown = ocr_process_file(file_path, mode, page_num)
if not markdown or markdown.startswith("Error") or markdown.startswith("Invalid"):
yield f'<div style="padding:20px; color:#ff6b6b;">❌ Lỗi OCR: {markdown}</div>'
return
except Exception as e:
yield f'<div style="padding:20px; color:#ff6b6b;">❌ Lỗi OCR: {str(e)}</div>'
return
yield '<div style="padding:20px; color:#2196F3;">🦀 Đang dịch...</div>'
time.sleep(0.5)
try:
yield from streaming_translate(markdown)
except Exception as e:
yield f'<div style="padding:20px; color:#ff6b6b;">❌ Lỗi dịch: {str(e)}</div>'
# ==================== GRADIO INTERFACE ====================
def load_default_example():
src = "images/example1.png"
if not os.path.exists(src):
# fallback: return empty values
return None, None
tmp_path = "/tmp/example1.png"
try:
shutil.copy(src, tmp_path)
except Exception:
# if copy fails, try to use src directly
tmp_path = src
img = Image.open(tmp_path)
return tmp_path, img
with gr.Blocks(theme=gr.themes.Soft(), title="MedCrab Translation") as demo:
gr.Markdown("""
<div style="text-align: center;">
<h1>🦀 MedCrab Translation</h1>
<p style="font-size: 18px;"><b>Quét PDF Y khoa → Dịch trực tiếp sang tiếng Việt (Streaming)</b></p>
<p style="font-size: 15px;">
<b>Model:</b>
<a href="https://huggingface.co/pnnbao-ump/MedCrab-1.5B" target="_blank">
https://huggingface.co/pnnbao-ump/MedCrab-1.5B
</a>
</p>
<p style="font-size: 15px;">
<b>Dataset:</b>
<a href="https://huggingface.co/datasets/pnnbao-ump/MedCrab" target="_blank">
https://huggingface.co/datasets/pnnbao-ump/MedCrab
</a>
</p>
<p style="font-size: 15px;">
<b>GitHub Repository:</b>
<a href="https://github.com/pnnbao97/MedCrab" target="_blank">
https://github.com/pnnbao97/MedCrab
</a>
</p>
<p style="font-size: 15px;">
<b>Tác giả:</b> Phạm Nguyễn Ngọc Bảo
</p>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📤 Tải file lên")
file_in = gr.File(label="PDF hoặc Hình ảnh", file_types=["image", ".pdf"], type="filepath")
input_img = gr.Image(label="Xem trước", type="pil", height=300)
page_input = gr.Textbox(label="Số trang (chỉ dùng cho PDF, mặc định: 1)", value="1", placeholder="Nhập số trang...")
mode = gr.Dropdown(list(MODEL_CONFIGS.keys()), value="Crab", label="Chế độ OCR")
gr.Markdown("### 🦀 Quét và Dịch")
process_btn = gr.Button("🚀 Quét OCR + Dịch tiếng Việt", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### 📄 Kết quả dịch tiếng Việt (Streaming)")
translation_output = gr.HTML(label="", value="")
with gr.Accordion("📚 Ví dụ mẫu", open=True):
gr.Markdown("**Thử ngay với các ví dụ có sẵn:**")
gr.Examples(
examples=[
["images/example1.png", "Crab", "1"],
["images/example2.png", "Crab", "1"],
],
inputs=[file_in, mode, page_input],
outputs=[translation_output],
fn=ocr_and_translate_streaming,
cache_examples=False,
label="Nhấp vào ví dụ để thử"
)
with gr.Accordion("⚖️ Giấy phép & Liên hệ", open=False):
gr.Markdown("""
### ⚖️ Giấy phép sử dụng
MedCrab được phát hành theo giấy phép:
**Creative Commons Attribution–NonCommercial 4.0 International (CC BY-NC 4.0)**
### ✅ Được phép
- Sử dụng cho mục đích cá nhân
- Nghiên cứu học thuật
- Giảng dạy, học tập, minh họa
- Thử nghiệm nội bộ (không phục vụ vận hành thực tế)
### ❌ Không được phép
- Sử dụng cho mục đích thương mại dưới mọi hình thức
- Tích hợp vào hệ thống sản xuất (production system)
- Triển khai tại bệnh viện, phòng khám, cơ sở y tế
- Cung cấp như một dịch vụ trả phí / SaaS
- Bán lại, cho thuê, nhượng quyền phần mềm
### 💼 Nhu cầu sử dụng thương mại
Nếu bạn đại diện cho:
- Bệnh viện / phòng khám
- Công ty công nghệ y tế
- Viện nghiên cứu có hoạt động thương mại hóa
- Startup, doanh nghiệp triển khai sản phẩm y tế
Vui lòng liên hệ trực tiếp tác giả để trao đổi về **giấy phép thương mại**:
👤 **Phạm Nguyễn Ngọc Bảo**
📧 Facebook: https://www.facebook.com/bao.phamnguyenngoc.5/
---
⚠️ **Lưu ý pháp lý:**
Phần mềm này chỉ phục vụ cho mục đích nghiên cứu và tham khảo,
**không thay thế cho chẩn đoán hoặc quyết định y khoa.**
""")
# Events
file_in.change(load_image, [file_in, page_input], [input_img])
file_in.change(update_page_info, [file_in], [page_input])
page_input.change(load_image, [file_in, page_input], [input_img])
process_btn.click(ocr_and_translate_streaming, [file_in, mode, page_input], [translation_output])
# Load default example into both file_in (filepath) and input_img (PIL) when UI starts
demo.load(
load_default_example,
inputs=None,
outputs=[file_in, input_img]
)
if __name__ == "__main__":
print("🚀 Starting MedCrab Translation on Hugging Face Spaces...")
demo.queue(max_size=20).launch()
|