Spaces:
Configuration error
Configuration error
File size: 21,966 Bytes
2c050c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import os
import torch
import cv2
import os.path as osp
import numpy as np
from PIL import Image
from CSD_MT.options import Options
from CSD_MT.model import CSD_MT
from faceutils.face_parsing.model import BiSeNet
import torchvision.transforms as transforms
import faceutils as futils
from color_page_filtering import (
extract_face_colors,
recommend_with_filters,
MIN_PRICE,
MAX_PRICE
)
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
# load face_parsing model
n_classes = 19
face_paseing_model = BiSeNet(n_classes=n_classes)
save_pth = osp.join('faceutils/face_parsing/res/cp', '79999_iter.pth')
face_paseing_model.load_state_dict(torch.load(save_pth,map_location='cpu'))
face_paseing_model.eval()
# load makeup transfer model
parser = Options()
opts = parser.parse()
makeup_model = CSD_MT(opts)
ep0, total_it = makeup_model.resume('CSD_MT/weights/CSD_MT.pth')
makeup_model.eval()
# def crop_image(image):
# up_ratio = 0.2 / 0.85 # delta_size / face_size
# down_ratio = 0.15 / 0.85 # delta_size / face_size
# width_ratio = 0.2 / 0.85 # delta_size / face_size
# image = Image.fromarray(image)
# face = futils.dlib.detect(image)
# if not face:
# raise ValueError("No face !")
# face_on_image = face[0]
# image, face, crop_face = futils.dlib.crop(image, face_on_image, up_ratio, down_ratio, width_ratio)
# np_image = np.array(image)
# return np_image
def get_face_parsing(x):
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
with torch.no_grad():
img = Image.fromarray(x)
image = img.resize((512, 512), Image.BILINEAR)
img = to_tensor(image)
img = torch.unsqueeze(img, 0)
out = face_paseing_model(img)[0]
parsing = out.squeeze(0).cpu().numpy().argmax(0)
return parsing
def extract_skin_color(image, parsing):
skin_mask = (parsing == 1)
skin_mask = cv2.resize(skin_mask.astype(np.uint8), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST).astype(bool)
skin_pixels = image[skin_mask]
if len(skin_pixels) == 0:
return np.array([0, 0, 0])
return np.mean(skin_pixels, axis=0)
def refine_eye_mask_by_color(image, eye_mask, skin_color_ref, tolerance=30):
eye_mask = cv2.resize(eye_mask.astype(np.uint8), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
skin_color = np.array(skin_color_ref, dtype=np.float32)
masked_pixels = image[eye_mask == 1].astype(np.float32)
distances = np.linalg.norm(masked_pixels - skin_color, axis=1)
keep_mask = np.zeros_like(eye_mask)
mask_indices = np.argwhere(eye_mask == 1)
for idx, dist in zip(mask_indices, distances):
if dist > tolerance:
keep_mask[idx[0], idx[1]] = 1
return keep_mask
def split_parse(opts,parse):
h, w = parse.shape
result = np.zeros([h, w, opts.semantic_dim])
result[:, :, 0][np.where(parse == 0)] = 1
result[:, :, 0][np.where(parse == 16)] = 1
result[:, :, 0][np.where(parse == 17)] = 1
result[:, :, 0][np.where(parse == 18)] = 1
result[:, :, 0][np.where(parse == 9)] = 1
result[:, :, 1][np.where(parse == 1)] = 1
result[:, :, 2][np.where(parse == 2)] = 1
result[:, :, 2][np.where(parse == 3)] = 1
result[:, :, 3][np.where(parse == 4)] = 1
result[:, :, 3][np.where(parse == 5)] = 1
result[:, :, 1][np.where(parse == 6)] = 1
result[:, :, 4][np.where(parse == 7)] = 1
result[:, :, 4][np.where(parse == 8)] = 1
result[:, :, 5][np.where(parse == 10)] = 1
result[:, :, 6][np.where(parse == 11)] = 1
result[:, :, 7][np.where(parse == 12)] = 1
result[:, :, 8][np.where(parse == 13)] = 1
result[:, :, 9][np.where(parse == 14)] = 1
result[:, :, 9][np.where(parse == 15)] = 1
result = np.array(result)
return result
def local_masks(opts,split_parse):
h, w, c = split_parse.shape
all_mask = np.zeros([h, w])
all_mask[np.where(split_parse[:, :, 0] == 0)] = 1
all_mask[np.where(split_parse[:, :, 3] == 1)] = 0
all_mask[np.where(split_parse[:, :, 6] == 1)] = 0
all_mask = np.expand_dims(all_mask, axis=2) # Expansion of the dimension
all_mask = np.concatenate((all_mask, all_mask, all_mask), axis=2)
return all_mask
def load_data_from_image(non_makeup_img, makeup_img,opts):
# non_makeup_img=crop_image(non_makeup_img)
# makeup_img = crop_image(makeup_img)
non_makeup_img=cv2.resize(non_makeup_img,(opts.resize_size,opts.resize_size))
makeup_img = cv2.resize(makeup_img, (opts.resize_size, opts.resize_size))
non_makeup_parse = get_face_parsing(non_makeup_img)
non_makeup_parse = cv2.resize(non_makeup_parse, (opts.resize_size, opts.resize_size),interpolation=cv2.INTER_NEAREST)
makeup_parse = get_face_parsing(makeup_img)
makeup_parse = cv2.resize(makeup_parse, (opts.resize_size, opts.resize_size),interpolation=cv2.INTER_NEAREST)
non_makeup_split_parse = split_parse(opts,non_makeup_parse)
makeup_split_parse = split_parse(opts,makeup_parse)
non_makeup_all_mask = local_masks(opts,
non_makeup_split_parse)
makeup_all_mask = local_masks(opts,
makeup_split_parse)
non_makeup_img = non_makeup_img / 127.5 - 1
non_makeup_img = np.transpose(non_makeup_img, (2, 0, 1))
non_makeup_split_parse = np.transpose(non_makeup_split_parse, (2, 0, 1))
makeup_img = makeup_img / 127.5 - 1
makeup_img = np.transpose(makeup_img, (2, 0, 1))
makeup_split_parse = np.transpose(makeup_split_parse, (2, 0, 1))
non_makeup_img=torch.from_numpy(non_makeup_img).type(torch.FloatTensor)
non_makeup_img = torch.unsqueeze(non_makeup_img, 0)
non_makeup_split_parse = torch.from_numpy(non_makeup_split_parse).type(torch.FloatTensor)
non_makeup_split_parse = torch.unsqueeze(non_makeup_split_parse, 0)
non_makeup_all_mask = np.transpose(non_makeup_all_mask, (2, 0, 1))
makeup_img = torch.from_numpy(makeup_img).type(torch.FloatTensor)
makeup_img = torch.unsqueeze(makeup_img, 0)
makeup_split_parse = torch.from_numpy(makeup_split_parse).type(torch.FloatTensor)
makeup_split_parse = torch.unsqueeze(makeup_split_parse, 0)
makeup_all_mask = np.transpose(makeup_all_mask, (2, 0, 1))
data = {'non_makeup_color_img': non_makeup_img,
'non_makeup_split_parse':non_makeup_split_parse,
'non_makeup_all_mask': torch.unsqueeze(torch.from_numpy(non_makeup_all_mask).type(torch.FloatTensor), 0),
'makeup_color_img': makeup_img,
'makeup_split_parse': makeup_split_parse,
'makeup_all_mask': torch.unsqueeze(torch.from_numpy(makeup_all_mask).type(torch.FloatTensor), 0)
}
return data
def remove_eye_from_transfer(transfer_img, non_makeup_image, parsing):
# ๋ ๋ง์คํฌ ์์ฑ (parsing == 4 ๋๋ 5)
eye_mask = np.zeros_like(parsing, dtype=np.uint8)
eye_mask[(parsing == 4) | (parsing == 5)] = 1
# ๋ ๋ง์คํฌ ํ์ฅ
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
eye_mask_dilated = cv2.dilate(eye_mask, kernel, iterations=1)
# 3์ฑ๋๋ก ํ์ฅ ๋ฐ ํฌ๊ธฐ ๋ง์ถ๊ธฐ
eye_mask_dilated = cv2.resize(eye_mask_dilated, (transfer_img.shape[1], transfer_img.shape[0]), interpolation=cv2.INTER_NEAREST)
eye_mask_dilated = np.stack([eye_mask_dilated] * 3, axis=2)
# non_makeup_image๋ ํฌ๊ธฐ ๋ง์ถ๊ธฐ
non_makeup_resized = cv2.resize(non_makeup_image, (transfer_img.shape[1], transfer_img.shape[0]), interpolation=cv2.INTER_LINEAR)
# ๋ ๋ถ๋ถ์ non_makeup ์ด๋ฏธ์ง๋ก ๊ต์ฒด
cleaned_transfer = transfer_img.copy()
cleaned_transfer[eye_mask_dilated == 1] = non_makeup_resized[eye_mask_dilated == 1]
return cleaned_transfer
def extract_eye_mask(parsing, expansion=25, upward_bias=10, inner_bias=20, outer_bias=30):
"""
๋ ์์ญ ๋ง์คํฌ๋ฅผ ์์ฑํ๋,
- ์์ชฝ(inner): ๋ ๋ ์ฌ์ด ๋ฐฉํฅ์ผ๋ก ํ์ฅ
- ๋ฐ๊นฅ์ชฝ(outer): ์ผ๊ตด ์ธ๊ณฝ ๋ฐฉํฅ์ผ๋ก ํ์ฅ
์ ๊ฐ๊ฐ ๋
๋ฆฝ์ ์ผ๋ก ์ ์ดํ ์ ์๋๋ก ๊ตฌํ.
"""
eye_mask = np.zeros_like(parsing, dtype=np.uint8)
eye_mask[parsing == 4] = 1 # ์ผ์ชฝ ๋
eye_mask[parsing == 5] = 1 # ์ค๋ฅธ์ชฝ ๋
# ๋ ์ ์ฒด ํ์ฅ
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (expansion, expansion))
expanded_mask = cv2.dilate(eye_mask, kernel, iterations=1)
# ์๋ก ํ์ฅ
upward_mask = np.zeros_like(expanded_mask)
upward_mask[:-upward_bias, :] = expanded_mask[upward_bias:, :]
# ๋ ๋ถ๋ฆฌ
left_eye_mask = np.where(parsing == 4, expanded_mask, 0)
right_eye_mask = np.where(parsing == 5, expanded_mask, 0)
# ์ผ์ชฝ ๋ - ์์ชฝ (์ค๋ฅธ์ชฝ์ผ๋ก ํ์ฅ)
left_eye_inner = np.zeros_like(expanded_mask)
left_eye_inner[:, :-inner_bias] = left_eye_mask[:, inner_bias:]
# ์ผ์ชฝ ๋ - ๋ฐ๊นฅ์ชฝ (์ผ์ชฝ์ผ๋ก ํ์ฅ)
left_eye_outer = np.zeros_like(expanded_mask)
left_eye_outer[:, outer_bias:] = left_eye_mask[:, :-outer_bias]
# ์ค๋ฅธ์ชฝ ๋ - ์์ชฝ (์ผ์ชฝ์ผ๋ก ํ์ฅ)
right_eye_inner = np.zeros_like(expanded_mask)
right_eye_inner[:, inner_bias:] = right_eye_mask[:, :-inner_bias]
# ์ค๋ฅธ์ชฝ ๋ - ๋ฐ๊นฅ์ชฝ (์ค๋ฅธ์ชฝ์ผ๋ก ํ์ฅ)
right_eye_outer = np.zeros_like(expanded_mask)
right_eye_outer[:, :-outer_bias] = right_eye_mask[:, outer_bias:]
# ๋ชจ๋ ๋ง์คํฌ ํฉ์น๊ธฐ
final_mask = (
expanded_mask
+ upward_mask
+ left_eye_inner + left_eye_outer
+ right_eye_inner + right_eye_outer
)
# ์๋ ๋ ์ ๊ฑฐ
final_mask = np.clip(final_mask - eye_mask, 0, 1)
final_mask[eye_mask == 1] = 0
return final_mask
def extract_eyebrow_mask(parsing):
# ๋์น ๋ง์คํฌ ์์ฑ
eyebrow_mask = np.zeros_like(parsing, dtype=np.uint8)
eyebrow_mask[np.where(parsing == 2)] = 1 # ์ผ์ชฝ ๋์น
eyebrow_mask[np.where(parsing == 3)] = 1 # ์ค๋ฅธ์ชฝ ๋์น
return eyebrow_mask
def extract_lips_mask(parsing):
# ์
์ ๋ง์คํฌ ์์ฑ
lips_mask = np.zeros_like(parsing, dtype=np.uint8)
lips_mask[np.where(parsing == 12)] = 1 # ์์
์
lips_mask[np.where(parsing == 13)] = 1 # ์๋ซ์
์
return lips_mask
def get_face_parsing(x):
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
with torch.no_grad():
img = Image.fromarray(x)
image = img.resize((512, 512), Image.BILINEAR)
img = to_tensor(image)
img = torch.unsqueeze(img, 0)
out = face_paseing_model(img)[0]
parsing = out.squeeze(0).cpu().numpy().argmax(0)
return parsing
def extract_color_from_mask(image, mask):
"""
๋ฐ์ด๋๋ฆฌ ๋ง์คํฌ(0 ๋๋ 1)๋ก๋ถํฐ ํด๋น ์์ญ์ ํ๊ท RGB ์์์ ์ถ์ถํ์ฌ HEX๋ก ๋ฐํ
"""
if image.dtype != np.uint8:
image = np.clip(image * 255, 0, 255).astype(np.uint8)
# RGB๋ก ๊ฐ์
region_pixels = image[mask.astype(bool)]
if len(region_pixels) == 0:
return "#000000"
avg_color = np.mean(region_pixels, axis=0).astype(np.uint8)
r, g, b = map(int, avg_color)
return f'#{r:02X}{g:02X}{b:02X}'
def extract_region_hex_color(image, parsing, region_ids):
if image.dtype != np.uint8:
image = np.clip(image * 255, 0, 255).astype(np.uint8)
parsing_resized = cv2.resize(parsing.astype(np.uint8), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
mask = np.isin(parsing_resized, region_ids)
region_pixels = image[mask]
if len(region_pixels) == 0:
return "#000000"
avg_color = np.mean(region_pixels, axis=0).astype(np.uint8) # โ image๊ฐ RGB๋ผ๊ณ ๊ฐ์
r, g, b = map(int, avg_color)
return f'#{r:02X}{g:02X}{b:02X}'
def makeup_transfer256(non_makeup_image, makeup_image, alpha_values, regions, mode = "makeup", custom_colors = None):
import time
start_time = time.time()
target_size = (non_makeup_image.shape[1], non_makeup_image.shape[0])
non_makeup_parse = get_face_parsing(non_makeup_image)
makeup_parse = get_face_parsing(makeup_image)
non_makeup_skin = extract_skin_color(non_makeup_image, non_makeup_parse)
makeup_skin = extract_skin_color(makeup_image, makeup_parse)
non_makeup_brightness = np.mean(non_makeup_skin)
makeup_brightness = np.mean(makeup_skin)
brighter_makeup = makeup_brightness > non_makeup_brightness + 20
raw_eye_mask = extract_eye_mask(non_makeup_parse)
refined_eye_mask = refine_eye_mask_by_color(non_makeup_image, raw_eye_mask, non_makeup_skin, tolerance=30)
masks = {
"eye": refined_eye_mask,
"eyebrow": extract_eyebrow_mask(non_makeup_parse),
"lip": extract_lips_mask(non_makeup_parse),
}
data = load_data_from_image(non_makeup_image, makeup_image, opts=opts)
with torch.no_grad():
transfer_tensor = makeup_model.test_pair(data)
transfer_img = transfer_tensor[0].cpu().float().numpy()
transfer_img = np.transpose((transfer_img / 2 + 0.5) * 255., (1, 2, 0))
transfer_img = np.clip(transfer_img, 0, 255).astype(np.uint8)
transfer_img = cv2.resize(transfer_img, target_size, interpolation=cv2.INTER_LINEAR)
transfer_img = transfer_img.astype(np.float32)
result_image = non_makeup_image.astype(np.float32)
if "all" in regions:
alpha_all = alpha_values.get("all", 1.0)
all_mask = np.ones(target_size[::-1], dtype=np.float32)
for region in regions:
if region != "all" and region in masks:
m = cv2.resize(masks[region], target_size, interpolation=cv2.INTER_NEAREST)
m = cv2.GaussianBlur(m.astype(np.float32), (13, 13), 0)
all_mask = all_mask * (1 - m)
for c in range(3):
result_image[:, :, c] = (
result_image[:, :, c] * (1 - alpha_all * all_mask)
+ transfer_img[:, :, c] * (alpha_all * all_mask)
)
for region in [r for r in ["eye", "eyebrow", "lip"] if r in regions]:
mask = masks.get(region, None)
if mask is not None:
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
mask = cv2.GaussianBlur(mask.astype(np.float32), (13, 13), 0)
mask = mask / mask.max() if mask.max() > 0 else mask
alpha = alpha_values.get(region, 1.0)
if mode == "makeup":
if region == "eye" and brighter_makeup:
blend_ratio = 0.4
non_makeup_resized = cv2.resize(non_makeup_image, (result_image.shape[1], result_image.shape[0]), interpolation=cv2.INTER_LINEAR).astype(np.float32)
for c in range(3):
result_image[:, :, c] = (
result_image[:, :, c] * (1 - alpha * mask)
+ (
blend_ratio * non_makeup_resized[:, :, c]
+ (1 - blend_ratio) * transfer_img[:, :, c]
) * (alpha * mask)
)
else:
for c in range(3):
result_image[:, :, c] = result_image[:, :, c] * (1 - alpha * mask) + transfer_img[:, :, c] * (alpha * mask)
elif mode == "rgb" and custom_colors is not None and region in custom_colors:
r, g, b = custom_colors[region]
for c, val in enumerate([r, g, b]):
result_image[:, :, c] = result_image[:, :, c] * (1 - alpha * mask) + val * (alpha * mask)
non_makeup_resized = cv2.resize(non_makeup_image, (result_image.shape[1], result_image.shape[0]), interpolation=cv2.INTER_LINEAR).astype(np.float32)
blend_ratio = 0.7
for c in range(3):
result_image[:, :, c] = result_image[:, :, c] * (1 - mask * blend_ratio) + non_makeup_resized[:, :, c] * (mask * blend_ratio)
result_image = result_image.astype(np.uint8)
recommendations = recommend_by_result_image_v2(result_image, non_makeup_parse, regions, alpha_values, mode, custom_colors)
if "lip" in recommendations:
print("[Lip Recommendation HEX]", recommendations["lip"]["hex"])
print("[Lip Recommendation HTML]\n", recommendations["lip"]["html"])
if "eye" in recommendations:
print("[Eye Recommendation HEX]", recommendations["eye"]["hex"])
print("[Eye Recommendation HTML]\n", recommendations["eye"]["html"])
if "eyebrow" in recommendations:
print("[Brow Recommendation HEX]", recommendations["eyebrow"]["hex"])
print("[Brow Recommendation HTML]\n", recommendations["eyebrow"]["html"])
def color_preview(hex_code, label):
return f"<div style='margin-bottom:8px;'><strong>{label} Color:</strong> <span style='display:inline-block; width:20px; height:20px; background:{hex_code}; border:1px solid #000; margin-left:6px;'></span> {hex_code}</div>"
color_hex_html = ""
html_output = ""
if "lip" in recommendations:
color_hex_html += color_preview(recommendations["lip"]["hex"], "Lip")
html_output += recommendations["lip"]["html"]
if "eye" in recommendations:
color_hex_html += color_preview(recommendations["eye"]["hex"], "Eye")
html_output += recommendations["eye"]["html"]
if "eyebrow" in recommendations:
color_hex_html += color_preview(recommendations["eyebrow"]["hex"], "Brow")
html_output += recommendations["eyebrow"]["html"]
elapsed = time.time() - start_time
print(f"[INFO] ๋ฉ์ดํฌ์
์ ์ด ๋ฐ ์ถ์ฒ ์๋ฃ๊น์ง ๊ฑธ๋ฆฐ ์๊ฐ: {elapsed:.2f}์ด")
return result_image, color_hex_html + html_output
def recommend_by_result_image_v2(result_image, parsing, regions, alpha_values, mode="makeup", custom_colors=None, top_n=3):
def compute_weighted_region_hex(image, weighted_mask, mode="makeup", rgb_color=None, skin_color_ref=None,
black_penalty_strength=7, saturation_boost_strength=4):
import colorsys
def rgb_to_hsv(r, g, b):
# 0~255 ๋ฒ์ โ 0~1 ๋ฒ์๋ก ์ ๊ทํ ํ HSV๋ก ๋ณํ
return colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
if image.dtype != np.uint8:
image = np.clip(image * 255, 0, 255).astype(np.uint8)
pixels = image[weighted_mask > 0.05]
if len(pixels) == 0:
return "#000000"
pixels = pixels.astype(np.float32)
# ---------- (1) ๊ฒ์ ์ ์ต์ ----------
black_dist = np.linalg.norm(pixels, axis=1) / np.linalg.norm([255, 255, 255])
black_weight = black_dist ** black_penalty_strength
# ---------- (2) ์ฑ๋ ๊ฐ์กฐ ----------
pixels_normalized = pixels / 255.0
hsv_pixels = np.array([rgb_to_hsv(*rgb) for rgb in pixels_normalized])
saturation = hsv_pixels[:, 1] # S ์ฑ๋
saturation_weight = saturation ** saturation_boost_strength
# ---------- (3) ๊ฐ์ค์น ํตํฉ ----------
combined_weight = black_weight * saturation_weight + 1e-6
combined_weight /= np.sum(combined_weight)
# ---------- (4) ํ๊ท ๊ณ์ฐ ----------
if mode == "makeup":
if skin_color_ref is not None:
distances = np.linalg.norm(pixels - np.array(skin_color_ref), axis=1)
combined_weight *= distances + 1e-6
combined_weight /= np.sum(combined_weight)
elif mode == "rgb" and rgb_color is not None:
pixels = np.array(rgb_color, dtype=np.float32).reshape(1, 3).repeat(len(pixels), axis=0)
weighted_avg = np.sum(pixels * combined_weight[:, np.newaxis], axis=0)
r, g, b = weighted_avg.astype(np.uint8)
return f'#{r:02X}{g:02X}{b:02X}'
results = {}
for region in [r for r in ["lip", "eye", "eyebrow"] if ("all" in regions or r in regions)]:
alpha = alpha_values.get(region, 1.0)
mask = get_weighted_mask(region, parsing, result_image.shape[:2])
non_makeup_skin = extract_skin_color(result_image, parsing)
if mask is None:
continue
if mode == "rgb" and custom_colors and region in custom_colors:
hex_color = compute_weighted_region_hex(result_image, mask * alpha, mode="rgb", rgb_color=custom_colors[region]if mode=="rgb" else None,
skin_color_ref=non_makeup_skin)
else:
hex_color = compute_weighted_region_hex(result_image, mask * alpha, mode="makeup")
section_map = {
"lip": (["lip"], [], [], [], []),
"eye": ([], ["eye shadow"], [], [], []),
"eyebrow": ([], ["eyebrow"], [], [], [])
}
sections, categories, brands, types, series = section_map[region]
title, html = recommend_with_filters(
hex_code=hex_color,
sections=sections, categories=categories, brands=brands,
types=types, series=series,
name_filter="", price_range=(MIN_PRICE, MAX_PRICE), etc_choices=[], top_n=top_n
)
results[region] = {"hex": hex_color, "title": title, "html": html}
return results
def get_weighted_mask(region_name, parsing, target_size):
if region_name == "eye":
raw_mask = extract_eye_mask(parsing, expansion=20, upward_bias=5, inner_bias=5, outer_bias=10)
elif region_name == "eyebrow":
raw_mask = extract_eyebrow_mask(parsing)
elif region_name == "lip":
raw_mask = extract_lips_mask(parsing)
else:
return None
mask = cv2.resize(raw_mask, target_size[::-1], interpolation=cv2.INTER_NEAREST).astype(np.float32)
mask = cv2.GaussianBlur(mask, (5,5), 0)
return mask / mask.max() if mask.max() > 0 else mask
|