Spaces:
Build error
Build error
Craig Pretzinger
commited on
Commit
·
1ee7467
1
Parent(s):
b1f5115
Updated files for enhanced PubMedBERT and GPT-4o-mini integration
Browse files- .gitignore +1 -0
- app.py +57 -146
.gitignore
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
venv/
|
|
|
|
|
|
| 1 |
venv/
|
| 2 |
+
.env
|
app.py
CHANGED
|
@@ -1,177 +1,88 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
| 4 |
import openai
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import faiss
|
| 7 |
import numpy as np
|
| 8 |
-
import requests
|
| 9 |
-
from datasets import load_dataset
|
| 10 |
|
| 11 |
-
# Load
|
|
|
|
|
|
|
|
|
|
| 12 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 13 |
-
openai.
|
|
|
|
| 14 |
|
| 15 |
# Load PubMedBERT tokenizer and model
|
| 16 |
tokenizer = BertTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
|
| 17 |
model = BertForSequenceClassification.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract", num_labels=2)
|
| 18 |
|
| 19 |
-
# FAISS setup for vector search
|
| 20 |
-
dimension = 768
|
| 21 |
index = faiss.IndexFlatL2(dimension)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
def embed_text(text):
|
| 25 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
| 26 |
outputs = model(**inputs, output_hidden_states=True)
|
| 27 |
hidden_state = outputs.hidden_states[-1]
|
| 28 |
return hidden_state.mean(dim=1).detach().numpy()
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
past_conversation = "FDA approval for companion diagnostics requires careful documentation."
|
| 32 |
-
past_embedding = embed_text(past_conversation)
|
| 33 |
-
past_embedding = np.array(past_embedding) # Convert to numpy array
|
| 34 |
-
|
| 35 |
-
# Reshape if necessary (e.g., (1, 768) for PubMedBERT)
|
| 36 |
-
past_embedding = past_embedding.reshape(1, -1)
|
| 37 |
-
|
| 38 |
-
index.add(past_embedding)
|
| 39 |
-
|
| 40 |
-
# Search past conversations/memory using FAISS
|
| 41 |
-
def search_memory(query):
|
| 42 |
-
query_embedding = embed_text(query)
|
| 43 |
-
D, I = index.search(query_embedding, k=1)
|
| 44 |
-
return I
|
| 45 |
-
|
| 46 |
-
# Handle FDA-specific queries with PubMedBERT
|
| 47 |
def handle_fda_query(query):
|
| 48 |
-
inputs = tokenizer(query, return_tensors="pt", padding="max_length", truncation=True)
|
| 49 |
outputs = model(**inputs)
|
| 50 |
logits = outputs.logits
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
cstm_scores = calculate_similarity(query_embedding, cstm_embeddings)
|
| 93 |
-
ltm_scores = calculate_similarity(query_embedding, ltm_embeddings)
|
| 94 |
-
|
| 95 |
-
# Retrieve top relevant results from CSTM and LTM
|
| 96 |
-
top_cstm = np.argmax(cstm_scores)
|
| 97 |
-
top_ltm = np.argmax(ltm_scores)
|
| 98 |
-
|
| 99 |
-
return top_cstm, top_ltm
|
| 100 |
-
|
| 101 |
-
# Calculate similarity between embeddings
|
| 102 |
-
def calculate_similarity(query_embedding, embeddings):
|
| 103 |
-
similarity_scores = []
|
| 104 |
-
for embedding in embeddings:
|
| 105 |
-
score = cosine_similarity(query_embedding, embedding)
|
| 106 |
-
similarity_scores.append(score)
|
| 107 |
-
return similarity_scores
|
| 108 |
-
|
| 109 |
-
# Cosine similarity function
|
| 110 |
-
def cosine_similarity(a, b):
|
| 111 |
-
dot_product = np.dot(a, b)
|
| 112 |
-
magnitude_a = np.linalg.norm(a)
|
| 113 |
-
magnitude_b = np.linalg.norm(b)
|
| 114 |
-
return dot_product / (magnitude_a * magnitude_b)
|
| 115 |
-
|
| 116 |
-
# Main assistant function
|
| 117 |
-
def respond(
|
| 118 |
-
message,
|
| 119 |
-
history: list[tuple[str, str]],
|
| 120 |
-
system_message,
|
| 121 |
-
max_tokens,
|
| 122 |
-
temperature,
|
| 123 |
-
top_p,
|
| 124 |
-
):
|
| 125 |
-
# Prepare context for OpenAI and PubMedBERT
|
| 126 |
-
messages = [{"role": "system", "content": system_message}]
|
| 127 |
-
|
| 128 |
-
for val in history:
|
| 129 |
-
if val[0]:
|
| 130 |
-
messages.append({"role": "user", "content": val[0]})
|
| 131 |
-
if val[1]:
|
| 132 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 133 |
-
|
| 134 |
-
messages.append({"role": "user", "content": message})
|
| 135 |
-
|
| 136 |
-
# Check if query is FDA-related
|
| 137 |
-
openai_response = handle_openai_query(f"Is this query FDA-related: {message}")
|
| 138 |
-
|
| 139 |
-
if "FDA" in openai_response or "regulatory" in openai_response:
|
| 140 |
-
# Search past conversations/memory using FAISS
|
| 141 |
-
memory_index = search_memory(message)
|
| 142 |
-
if memory_index:
|
| 143 |
-
return f"Found relevant past memory: {past_conversation}"
|
| 144 |
-
|
| 145 |
-
# If no memory match, proceed with PubMedBERT
|
| 146 |
-
return handle_fda_query(message)
|
| 147 |
-
|
| 148 |
-
# If query asks for web search, perform web search
|
| 149 |
-
if "search the web" in message.lower():
|
| 150 |
-
return web_search(message)
|
| 151 |
-
|
| 152 |
-
# Perform semantic search on CSTM and LTM
|
| 153 |
-
top_cstm, top_ltm = semantic_search(message, cstm, ltm)
|
| 154 |
-
if top_cstm:
|
| 155 |
-
return f"Found relevant context: {cstm[top_cstm]}"
|
| 156 |
-
elif top_ltm:
|
| 157 |
-
return f"Found relevant knowledge: {ltm[top_ltm]}"
|
| 158 |
-
|
| 159 |
-
# General conversational handling with GPT-4O
|
| 160 |
-
response = handle_openai_query(message)
|
| 161 |
-
return response
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
# Create Gradio ChatInterface for interaction
|
| 165 |
-
demo = gr.ChatInterface(
|
| 166 |
-
respond,
|
| 167 |
-
additional_inputs=[
|
| 168 |
-
gr.Textbox(value="You are Ferris2.0, an FDA expert.", label="System message"),
|
| 169 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 170 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 171 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 172 |
],
|
|
|
|
| 173 |
)
|
| 174 |
|
| 175 |
-
|
| 176 |
if __name__ == "__main__":
|
| 177 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import openai
|
| 3 |
import os
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
import requests
|
| 6 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 7 |
+
import torch
|
| 8 |
import faiss
|
| 9 |
import numpy as np
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Load .env
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
# API Keys and Org ID
|
| 15 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 16 |
+
openai.organization = os.getenv("OPENAI_ORG_ID")
|
| 17 |
+
serper_api_key = os.getenv("SERPER_API_KEY")
|
| 18 |
|
| 19 |
# Load PubMedBERT tokenizer and model
|
| 20 |
tokenizer = BertTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
|
| 21 |
model = BertForSequenceClassification.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract", num_labels=2)
|
| 22 |
|
| 23 |
+
# FAISS setup for vector search
|
| 24 |
+
dimension = 768
|
| 25 |
index = faiss.IndexFlatL2(dimension)
|
| 26 |
|
| 27 |
+
# Function to embed text (PubMedBERT)
|
| 28 |
def embed_text(text):
|
| 29 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
| 30 |
outputs = model(**inputs, output_hidden_states=True)
|
| 31 |
hidden_state = outputs.hidden_states[-1]
|
| 32 |
return hidden_state.mean(dim=1).detach().numpy()
|
| 33 |
|
| 34 |
+
# Function to retrieve info from PubMedBERT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def handle_fda_query(query):
|
| 36 |
+
inputs = tokenizer(query, return_tensors="pt", padding="max_length", truncation=True, max_length=512)
|
| 37 |
outputs = model(**inputs)
|
| 38 |
logits = outputs.logits
|
| 39 |
+
prediction = torch.argmax(logits, dim=1).item()
|
| 40 |
+
|
| 41 |
+
# Simulate a meaningful FDA-related response
|
| 42 |
+
if prediction == 1:
|
| 43 |
+
return f"FDA Query Processed: '{query}' contains important regulatory information."
|
| 44 |
+
else:
|
| 45 |
+
return f"FDA Query Processed: '{query}' seems to be general and not regulatory-heavy."
|
| 46 |
+
|
| 47 |
+
# Function to enhance info via GPT-4o-mini
|
| 48 |
+
def enhance_with_gpt4o(fda_response):
|
| 49 |
+
try:
|
| 50 |
+
response = openai.ChatCompletion.create(
|
| 51 |
+
model="gpt-4o-mini", # Correct model
|
| 52 |
+
messages=[{"role": "system", "content": "You are an expert FDA assistant."}, {"role": "user", "content": f"Enhance this FDA info: {fda_response}"}],
|
| 53 |
+
max_tokens=150
|
| 54 |
+
)
|
| 55 |
+
return response['choices'][0]['message']['content']
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error: {str(e)}"
|
| 58 |
+
|
| 59 |
+
# Main function that gets PubMedBERT output and enhances it using GPT-4o-mini
|
| 60 |
+
def respond(message, system_message, max_tokens, temperature, top_p):
|
| 61 |
+
try:
|
| 62 |
+
# First retrieve info via PubMedBERT
|
| 63 |
+
fda_response = handle_fda_query(message)
|
| 64 |
+
|
| 65 |
+
# Then enhance this info via GPT-4o-mini
|
| 66 |
+
enhanced_response = enhance_with_gpt4o(fda_response)
|
| 67 |
+
|
| 68 |
+
# Return both the PubMedBERT result and the enhanced version
|
| 69 |
+
return f"Original Info from PubMedBERT: {fda_response}\n\nEnhanced Info via GPT-4o-mini: {enhanced_response}"
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
return f"Error: {str(e)}"
|
| 73 |
+
|
| 74 |
+
# Gradio Interface
|
| 75 |
+
demo = gr.Interface(
|
| 76 |
+
fn=respond,
|
| 77 |
+
inputs=[
|
| 78 |
+
gr.Textbox(label="Enter your FDA query", placeholder="Ask Ferris2.0 anything FDA-related."),
|
| 79 |
+
gr.Textbox(value="You are Ferris2.0, the most advanced FDA Regulatory Assistant.", label="System message"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 81 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 82 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 83 |
],
|
| 84 |
+
outputs="text",
|
| 85 |
)
|
| 86 |
|
|
|
|
| 87 |
if __name__ == "__main__":
|
| 88 |
demo.launch()
|