Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,209 Bytes
74593d4 bc27759 0cc203f 74593d4 bc27759 74593d4 bc27759 74593d4 2187069 74593d4 bc27759 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 2187069 74593d4 bc27759 74593d4 bc27759 74593d4 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 74593d4 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 0cc203f bc27759 e933213 a3f9b81 bc27759 74593d4 bc27759 e933213 bc27759 ec6fe6f bc27759 1fd4203 bc27759 1b33b1c bc27759 74593d4 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 74593d4 bc27759 74593d4 591ae01 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 bc27759 05bb57b a3f9b81 bc27759 0bd7a83 ec6fe6f bc27759 a3f9b81 bc27759 0bd7a83 a3f9b81 bc27759 a3f9b81 bc27759 a3f9b81 ec6fe6f bc27759 a3f9b81 5a34082 74593d4 bc27759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import gc
import cv2
import tempfile
import spaces
import gradio as gr
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
from transformers import (
Sam3Model, Sam3Processor,
Sam3VideoModel, Sam3VideoProcessor
)
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class CustomBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
app_theme = CustomBlueTheme()
MODEL_CACHE = {}
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using compute device: {device}")
def clear_vram():
"""Forces RAM/VRAM cleanup."""
if MODEL_CACHE:
print("🧹 Cleaning up memory...")
MODEL_CACHE.clear()
gc.collect()
torch.cuda.empty_cache()
def load_segmentation_model(model_key):
"""Lazy loads the specific SAM3 model required."""
if model_key in MODEL_CACHE:
return MODEL_CACHE[model_key]
clear_vram()
print(f"⏳ Loading {model_key}...")
try:
if model_key == "img_seg_model":
seg_model = Sam3Model.from_pretrained("facebook/sam3").to(device)
seg_processor = Sam3Processor.from_pretrained("facebook/sam3")
MODEL_CACHE[model_key] = (seg_model, seg_processor)
elif model_key == "vid_seg_model":
vid_model = Sam3VideoModel.from_pretrained("facebook/sam3").to(device, dtype=torch.bfloat16)
vid_processor = Sam3VideoProcessor.from_pretrained("facebook/sam3")
MODEL_CACHE[model_key] = (vid_model, vid_processor)
print(f"✅ {model_key} loaded.")
return MODEL_CACHE[model_key]
except Exception as e:
print(f"❌ Error loading model: {e}")
clear_vram()
raise e
def apply_mask_overlay(base_image, mask_data, opacity=0.5):
"""Draws segmentation masks on top of an image."""
if isinstance(base_image, np.ndarray):
base_image = Image.fromarray(base_image)
base_image = base_image.convert("RGBA")
if mask_data is None or len(mask_data) == 0:
return base_image.convert("RGB")
if isinstance(mask_data, torch.Tensor):
mask_data = mask_data.cpu().numpy()
mask_data = mask_data.astype(np.uint8)
# Handle dimensions
if mask_data.ndim == 4: mask_data = mask_data[0]
if mask_data.ndim == 3 and mask_data.shape[0] == 1: mask_data = mask_data[0]
num_masks = mask_data.shape[0] if mask_data.ndim == 3 else 1
if mask_data.ndim == 2:
mask_data = [mask_data]
num_masks = 1
try:
color_map = matplotlib.colormaps["rainbow"].resampled(max(num_masks, 1))
except AttributeError:
import matplotlib.cm as cm
color_map = cm.get_cmap("rainbow").resampled(max(num_masks, 1))
rgb_colors = [tuple(int(c * 255) for c in color_map(i)[:3]) for i in range(num_masks)]
composite_layer = Image.new("RGBA", base_image.size, (0, 0, 0, 0))
for i, single_mask in enumerate(mask_data):
mask_bitmap = Image.fromarray((single_mask * 255).astype(np.uint8))
if mask_bitmap.size != base_image.size:
mask_bitmap = mask_bitmap.resize(base_image.size, resample=Image.NEAREST)
fill_color = rgb_colors[i]
color_fill = Image.new("RGBA", base_image.size, fill_color + (0,))
mask_alpha = mask_bitmap.point(lambda v: int(v * opacity) if v > 0 else 0)
color_fill.putalpha(mask_alpha)
composite_layer = Image.alpha_composite(composite_layer, color_fill)
return Image.alpha_composite(base_image, composite_layer).convert("RGB")
@spaces.GPU
def run_image_segmentation(source_img, text_query, conf_thresh=0.5):
if source_img is None or not text_query:
raise gr.Error("Please provide an image and a text prompt.")
try:
active_model, active_processor = load_segmentation_model("img_seg_model")
pil_image = source_img.convert("RGB")
model_inputs = active_processor(images=pil_image, text=text_query, return_tensors="pt").to(device)
with torch.no_grad():
inference_output = active_model(**model_inputs)
processed_results = active_processor.post_process_instance_segmentation(
inference_output,
threshold=conf_thresh,
mask_threshold=0.5,
target_sizes=model_inputs.get("original_sizes").tolist()
)[0]
# Use AnnotatedImage format
annotation_list = []
raw_masks = processed_results['masks'].cpu().numpy()
raw_scores = processed_results['scores'].cpu().numpy()
for idx, mask_array in enumerate(raw_masks):
label_str = f"{text_query} ({raw_scores[idx]:.2f})"
annotation_list.append((mask_array, label_str))
return (pil_image, annotation_list)
except Exception as e:
raise gr.Error(f"Error during image processing: {e}")
def calc_timeout_duration(vid_file, *args):
return args[-1] if args else 60
@spaces.GPU(duration=calc_timeout_duration)
def run_video_segmentation(source_vid, text_query, frame_limit, time_limit):
if not source_vid or not text_query:
raise gr.Error("Missing video or prompt.")
try:
active_model, active_processor = load_segmentation_model("vid_seg_model")
video_cap = cv2.VideoCapture(source_vid)
vid_fps = video_cap.get(cv2.CAP_PROP_FPS)
vid_w = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
vid_h = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_frames = []
counter = 0
while video_cap.isOpened():
ret, frame = video_cap.read()
if not ret or (frame_limit > 0 and counter >= frame_limit): break
video_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
counter += 1
video_cap.release()
session = active_processor.init_video_session(video=video_frames, inference_device=device, dtype=torch.bfloat16)
session = active_processor.add_text_prompt(inference_session=session, text=text_query)
temp_out_path = tempfile.mktemp(suffix=".mp4")
video_writer = cv2.VideoWriter(temp_out_path, cv2.VideoWriter_fourcc(*'mp4v'), vid_fps, (vid_w, vid_h))
for model_out in active_model.propagate_in_video_iterator(inference_session=session, max_frame_num_to_track=len(video_frames)):
post_processed = active_processor.postprocess_outputs(session, model_out)
f_idx = model_out.frame_idx
original_pil = Image.fromarray(video_frames[f_idx])
if 'masks' in post_processed:
detected_masks = post_processed['masks']
if detected_masks.ndim == 4: detected_masks = detected_masks.squeeze(1)
final_frame = apply_mask_overlay(original_pil, detected_masks)
else:
final_frame = original_pil
video_writer.write(cv2.cvtColor(np.array(final_frame), cv2.COLOR_RGB2BGR))
video_writer.release()
return temp_out_path, "Video processing completed successfully."
except Exception as e:
return None, f"Error during video processing: {str(e)}"
custom_css="""
#col-container { margin: 0 auto; max-width: 1100px; }
#main-title h1 { font-size: 2.1em !important; }
"""
with gr.Blocks(css=custom_css, theme=app_theme) as main_interface:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **SAM3: Segment Anything Model 3**", elem_id="main-title")
with gr.Tabs():
with gr.Tab("Image Segmentation"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Source Image", type="pil", height=350)
txt_prompt_img = gr.Textbox(label="Text Description", placeholder="e.g., cat, face, car wheel")
with gr.Accordion("Advanced Settings", open=False):
conf_slider = gr.Slider(0.0, 1.0, value=0.45, step=0.05, label="Confidence Threshold")
btn_process_img = gr.Button("Segment Image", variant="primary")
with gr.Column(scale=1.5):
image_result = gr.AnnotatedImage(label="Segmented Result", height=450)
gr.Examples(
examples=[
["examples/player.jpg", "player in white", 0.5],
],
inputs=[image_input, txt_prompt_img, conf_slider],
outputs=[image_result],
fn=run_image_segmentation,
cache_examples=False,
label="Image Examples"
)
btn_process_img.click(
fn=run_image_segmentation,
inputs=[image_input, txt_prompt_img, conf_slider],
outputs=[image_result]
)
with gr.Tab("Video Segmentation"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Source Video", format="mp4")
txt_prompt_vid = gr.Textbox(label="Text Description", placeholder="e.g., person running, red car")
with gr.Row():
frame_limiter = gr.Slider(10, 500, value=60, step=10, label="Max Frames")
time_limiter = gr.Radio([60, 120, 180], value=60, label="Timeout (seconds)")
btn_process_vid = gr.Button("Segment Video", variant="primary")
with gr.Column():
video_result = gr.Video(label="Processed Video")
process_status = gr.Textbox(label="System Status", interactive=False)
gr.Examples(
examples=[
["examples/sample_video.mp4", "ball", 60, 60],
],
inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter],
outputs=[video_result, process_status],
fn=run_video_segmentation,
cache_examples=False,
label="Video Examples"
)
btn_process_vid.click(
run_video_segmentation,
inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter],
outputs=[video_result, process_status]
)
if __name__ == "__main__":
main_interface.launch(ssr_mode=False, show_error=True) |