File size: 13,209 Bytes
74593d4
bc27759
 
 
0cc203f
74593d4
 
 
bc27759
 
 
74593d4
 
 
bc27759
 
 
 
74593d4
2187069
 
 
 
 
 
 
 
 
 
 
 
 
74593d4
 
bc27759
74593d4
 
 
2187069
 
74593d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187069
74593d4
 
2187069
74593d4
 
 
2187069
 
 
 
 
 
74593d4
 
 
 
 
 
 
 
 
bc27759
74593d4
bc27759
74593d4
bc27759
a3f9b81
bc27759
 
 
 
 
 
 
a3f9b81
bc27759
 
 
 
74593d4
bc27759
 
a3f9b81
bc27759
 
 
 
 
 
 
 
 
 
 
 
 
a3f9b81
bc27759
 
 
 
 
 
 
 
 
 
 
 
 
a3f9b81
bc27759
 
 
 
 
 
 
 
 
 
 
 
a3f9b81
bc27759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f9b81
0cc203f
bc27759
 
 
e933213
a3f9b81
bc27759
 
 
 
74593d4
bc27759
 
e933213
bc27759
 
 
 
 
 
ec6fe6f
 
bc27759
 
 
 
 
 
 
 
 
1fd4203
bc27759
 
1b33b1c
bc27759
 
74593d4
bc27759
 
 
 
 
a3f9b81
bc27759
a3f9b81
bc27759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f9b81
bc27759
 
 
 
 
 
 
 
a3f9b81
bc27759
 
a3f9b81
 
bc27759
a3f9b81
bc27759
 
 
74593d4
 
bc27759
74593d4
591ae01
a3f9b81
 
bc27759
a3f9b81
 
bc27759
 
 
 
a3f9b81
bc27759
05bb57b
a3f9b81
bc27759
0bd7a83
ec6fe6f
 
 
 
 
 
 
 
 
 
 
bc27759
 
 
 
a3f9b81
 
bc27759
0bd7a83
a3f9b81
bc27759
 
 
 
 
 
 
 
 
a3f9b81
bc27759
 
a3f9b81
ec6fe6f
 
 
 
 
 
 
 
 
 
 
bc27759
 
 
 
a3f9b81
5a34082
74593d4
bc27759
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import gc
import cv2
import tempfile
import spaces
import gradio as gr
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
from transformers import (
    Sam3Model, Sam3Processor,
    Sam3VideoModel, Sam3VideoProcessor
)

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class CustomBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

app_theme = CustomBlueTheme()

MODEL_CACHE = {} 
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using compute device: {device}")

def clear_vram():
    """Forces RAM/VRAM cleanup."""
    if MODEL_CACHE:
        print("🧹 Cleaning up memory...")
        MODEL_CACHE.clear()
    gc.collect()
    torch.cuda.empty_cache()

def load_segmentation_model(model_key):
    """Lazy loads the specific SAM3 model required."""
    if model_key in MODEL_CACHE:
        return MODEL_CACHE[model_key]

    clear_vram()
    print(f"⏳ Loading {model_key}...")
    
    try:
        if model_key == "img_seg_model":
            seg_model = Sam3Model.from_pretrained("facebook/sam3").to(device)
            seg_processor = Sam3Processor.from_pretrained("facebook/sam3")
            MODEL_CACHE[model_key] = (seg_model, seg_processor)
            
        elif model_key == "vid_seg_model":
            vid_model = Sam3VideoModel.from_pretrained("facebook/sam3").to(device, dtype=torch.bfloat16)
            vid_processor = Sam3VideoProcessor.from_pretrained("facebook/sam3")
            MODEL_CACHE[model_key] = (vid_model, vid_processor)
            
        print(f"✅ {model_key} loaded.")
        return MODEL_CACHE[model_key]
        
    except Exception as e:
        print(f"❌ Error loading model: {e}")
        clear_vram()
        raise e

def apply_mask_overlay(base_image, mask_data, opacity=0.5):
    """Draws segmentation masks on top of an image."""
    if isinstance(base_image, np.ndarray):
        base_image = Image.fromarray(base_image)
    base_image = base_image.convert("RGBA")
    
    if mask_data is None or len(mask_data) == 0:
        return base_image.convert("RGB")
        
    if isinstance(mask_data, torch.Tensor):
        mask_data = mask_data.cpu().numpy()
    mask_data = mask_data.astype(np.uint8)
    
    # Handle dimensions
    if mask_data.ndim == 4: mask_data = mask_data[0] 
    if mask_data.ndim == 3 and mask_data.shape[0] == 1: mask_data = mask_data[0]
    
    num_masks = mask_data.shape[0] if mask_data.ndim == 3 else 1
    if mask_data.ndim == 2:
        mask_data = [mask_data]
        num_masks = 1

    try:
        color_map = matplotlib.colormaps["rainbow"].resampled(max(num_masks, 1))
    except AttributeError:
        import matplotlib.cm as cm
        color_map = cm.get_cmap("rainbow").resampled(max(num_masks, 1))
        
    rgb_colors = [tuple(int(c * 255) for c in color_map(i)[:3]) for i in range(num_masks)]
    composite_layer = Image.new("RGBA", base_image.size, (0, 0, 0, 0))
    
    for i, single_mask in enumerate(mask_data):
        mask_bitmap = Image.fromarray((single_mask * 255).astype(np.uint8))
        if mask_bitmap.size != base_image.size:
            mask_bitmap = mask_bitmap.resize(base_image.size, resample=Image.NEAREST)
        
        fill_color = rgb_colors[i]
        color_fill = Image.new("RGBA", base_image.size, fill_color + (0,))
        mask_alpha = mask_bitmap.point(lambda v: int(v * opacity) if v > 0 else 0)
        color_fill.putalpha(mask_alpha)
        composite_layer = Image.alpha_composite(composite_layer, color_fill)
        
    return Image.alpha_composite(base_image, composite_layer).convert("RGB")

@spaces.GPU
def run_image_segmentation(source_img, text_query, conf_thresh=0.5):
    if source_img is None or not text_query:
        raise gr.Error("Please provide an image and a text prompt.")
    
    try:
        active_model, active_processor = load_segmentation_model("img_seg_model")
        pil_image = source_img.convert("RGB")
        
        model_inputs = active_processor(images=pil_image, text=text_query, return_tensors="pt").to(device)

        with torch.no_grad():
            inference_output = active_model(**model_inputs)

        processed_results = active_processor.post_process_instance_segmentation(
            inference_output,
            threshold=conf_thresh,
            mask_threshold=0.5,
            target_sizes=model_inputs.get("original_sizes").tolist()
        )[0]

        # Use AnnotatedImage format
        annotation_list = []
        raw_masks = processed_results['masks'].cpu().numpy()
        raw_scores = processed_results['scores'].cpu().numpy()
        
        for idx, mask_array in enumerate(raw_masks):
            label_str = f"{text_query} ({raw_scores[idx]:.2f})"
            annotation_list.append((mask_array, label_str))
            
        return (pil_image, annotation_list)

    except Exception as e:
        raise gr.Error(f"Error during image processing: {e}")

def calc_timeout_duration(vid_file, *args):
    return args[-1] if args else 60

@spaces.GPU(duration=calc_timeout_duration)
def run_video_segmentation(source_vid, text_query, frame_limit, time_limit):
    if not source_vid or not text_query:
        raise gr.Error("Missing video or prompt.")
        
    try:
        active_model, active_processor = load_segmentation_model("vid_seg_model")
        
        video_cap = cv2.VideoCapture(source_vid)
        vid_fps = video_cap.get(cv2.CAP_PROP_FPS)
        vid_w = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        vid_h = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        video_frames = []
        counter = 0
        while video_cap.isOpened():
            ret, frame = video_cap.read()
            if not ret or (frame_limit > 0 and counter >= frame_limit): break
            video_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            counter += 1
        video_cap.release()
        
        session = active_processor.init_video_session(video=video_frames, inference_device=device, dtype=torch.bfloat16)
        session = active_processor.add_text_prompt(inference_session=session, text=text_query)
        
        temp_out_path = tempfile.mktemp(suffix=".mp4")
        video_writer = cv2.VideoWriter(temp_out_path, cv2.VideoWriter_fourcc(*'mp4v'), vid_fps, (vid_w, vid_h))
        
        for model_out in active_model.propagate_in_video_iterator(inference_session=session, max_frame_num_to_track=len(video_frames)):
            post_processed = active_processor.postprocess_outputs(session, model_out)
            f_idx = model_out.frame_idx
            original_pil = Image.fromarray(video_frames[f_idx])
            
            if 'masks' in post_processed:
                detected_masks = post_processed['masks']
                if detected_masks.ndim == 4: detected_masks = detected_masks.squeeze(1)
                final_frame = apply_mask_overlay(original_pil, detected_masks)
            else: 
                final_frame = original_pil
                
            video_writer.write(cv2.cvtColor(np.array(final_frame), cv2.COLOR_RGB2BGR))
            
        video_writer.release()
        return temp_out_path, "Video processing completed successfully."
        
    except Exception as e:
        return None, f"Error during video processing: {str(e)}"

custom_css="""
#col-container { margin: 0 auto; max-width: 1100px; }
#main-title h1 { font-size: 2.1em !important; }
"""

with gr.Blocks(css=custom_css, theme=app_theme) as main_interface:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **SAM3: Segment Anything Model 3**", elem_id="main-title")

        with gr.Tabs():
            with gr.Tab("Image Segmentation"):
                with gr.Row():
                    with gr.Column(scale=1):
                        image_input = gr.Image(label="Source Image", type="pil", height=350)
                        txt_prompt_img = gr.Textbox(label="Text Description", placeholder="e.g., cat, face, car wheel")
                        with gr.Accordion("Advanced Settings", open=False):
                            conf_slider = gr.Slider(0.0, 1.0, value=0.45, step=0.05, label="Confidence Threshold")
                        
                        btn_process_img = gr.Button("Segment Image", variant="primary")

                    with gr.Column(scale=1.5):
                        image_result = gr.AnnotatedImage(label="Segmented Result", height=450)
                
                gr.Examples(
                    examples=[
                        ["examples/player.jpg", "player in white", 0.5],
                    ],
                    inputs=[image_input, txt_prompt_img, conf_slider],
                    outputs=[image_result],
                    fn=run_image_segmentation,
                    cache_examples=False,
                    label="Image Examples"
                )

                btn_process_img.click(
                    fn=run_image_segmentation, 
                    inputs=[image_input, txt_prompt_img, conf_slider], 
                    outputs=[image_result]
                )

            with gr.Tab("Video Segmentation"):
                with gr.Row():
                    with gr.Column():
                        video_input = gr.Video(label="Source Video", format="mp4")
                        txt_prompt_vid = gr.Textbox(label="Text Description", placeholder="e.g., person running, red car")
                        
                        with gr.Row():
                            frame_limiter = gr.Slider(10, 500, value=60, step=10, label="Max Frames")
                            time_limiter = gr.Radio([60, 120, 180], value=60, label="Timeout (seconds)")
                        
                        btn_process_vid = gr.Button("Segment Video", variant="primary")
                        
                    with gr.Column():
                        video_result = gr.Video(label="Processed Video")
                        process_status = gr.Textbox(label="System Status", interactive=False)
                
                gr.Examples(
                    examples=[
                        ["examples/sample_video.mp4", "ball", 60, 60],
                    ],
                    inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter],
                    outputs=[video_result, process_status],
                    fn=run_video_segmentation,
                    cache_examples=False,
                    label="Video Examples"
                )

                btn_process_vid.click(
                    run_video_segmentation, 
                    inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter], 
                    outputs=[video_result, process_status]
                )

if __name__ == "__main__":
    main_interface.launch(ssr_mode=False, show_error=True)