import os import gc import cv2 import tempfile import spaces import gradio as gr import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from PIL import Image from typing import Iterable from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes from transformers import ( Sam3Model, Sam3Processor, Sam3VideoModel, Sam3VideoProcessor ) colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class CustomBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) app_theme = CustomBlueTheme() MODEL_CACHE = {} device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using compute device: {device}") def clear_vram(): """Forces RAM/VRAM cleanup.""" if MODEL_CACHE: print("🧹 Cleaning up memory...") MODEL_CACHE.clear() gc.collect() torch.cuda.empty_cache() def load_segmentation_model(model_key): """Lazy loads the specific SAM3 model required.""" if model_key in MODEL_CACHE: return MODEL_CACHE[model_key] clear_vram() print(f"⏳ Loading {model_key}...") try: if model_key == "img_seg_model": seg_model = Sam3Model.from_pretrained("facebook/sam3").to(device) seg_processor = Sam3Processor.from_pretrained("facebook/sam3") MODEL_CACHE[model_key] = (seg_model, seg_processor) elif model_key == "vid_seg_model": vid_model = Sam3VideoModel.from_pretrained("facebook/sam3").to(device, dtype=torch.bfloat16) vid_processor = Sam3VideoProcessor.from_pretrained("facebook/sam3") MODEL_CACHE[model_key] = (vid_model, vid_processor) print(f"✅ {model_key} loaded.") return MODEL_CACHE[model_key] except Exception as e: print(f"❌ Error loading model: {e}") clear_vram() raise e def apply_mask_overlay(base_image, mask_data, opacity=0.5): """Draws segmentation masks on top of an image.""" if isinstance(base_image, np.ndarray): base_image = Image.fromarray(base_image) base_image = base_image.convert("RGBA") if mask_data is None or len(mask_data) == 0: return base_image.convert("RGB") if isinstance(mask_data, torch.Tensor): mask_data = mask_data.cpu().numpy() mask_data = mask_data.astype(np.uint8) # Handle dimensions if mask_data.ndim == 4: mask_data = mask_data[0] if mask_data.ndim == 3 and mask_data.shape[0] == 1: mask_data = mask_data[0] num_masks = mask_data.shape[0] if mask_data.ndim == 3 else 1 if mask_data.ndim == 2: mask_data = [mask_data] num_masks = 1 try: color_map = matplotlib.colormaps["rainbow"].resampled(max(num_masks, 1)) except AttributeError: import matplotlib.cm as cm color_map = cm.get_cmap("rainbow").resampled(max(num_masks, 1)) rgb_colors = [tuple(int(c * 255) for c in color_map(i)[:3]) for i in range(num_masks)] composite_layer = Image.new("RGBA", base_image.size, (0, 0, 0, 0)) for i, single_mask in enumerate(mask_data): mask_bitmap = Image.fromarray((single_mask * 255).astype(np.uint8)) if mask_bitmap.size != base_image.size: mask_bitmap = mask_bitmap.resize(base_image.size, resample=Image.NEAREST) fill_color = rgb_colors[i] color_fill = Image.new("RGBA", base_image.size, fill_color + (0,)) mask_alpha = mask_bitmap.point(lambda v: int(v * opacity) if v > 0 else 0) color_fill.putalpha(mask_alpha) composite_layer = Image.alpha_composite(composite_layer, color_fill) return Image.alpha_composite(base_image, composite_layer).convert("RGB") @spaces.GPU def run_image_segmentation(source_img, text_query, conf_thresh=0.5): if source_img is None or not text_query: raise gr.Error("Please provide an image and a text prompt.") try: active_model, active_processor = load_segmentation_model("img_seg_model") pil_image = source_img.convert("RGB") model_inputs = active_processor(images=pil_image, text=text_query, return_tensors="pt").to(device) with torch.no_grad(): inference_output = active_model(**model_inputs) processed_results = active_processor.post_process_instance_segmentation( inference_output, threshold=conf_thresh, mask_threshold=0.5, target_sizes=model_inputs.get("original_sizes").tolist() )[0] # Use AnnotatedImage format annotation_list = [] raw_masks = processed_results['masks'].cpu().numpy() raw_scores = processed_results['scores'].cpu().numpy() for idx, mask_array in enumerate(raw_masks): label_str = f"{text_query} ({raw_scores[idx]:.2f})" annotation_list.append((mask_array, label_str)) return (pil_image, annotation_list) except Exception as e: raise gr.Error(f"Error during image processing: {e}") def calc_timeout_duration(vid_file, *args): return args[-1] if args else 60 @spaces.GPU(duration=calc_timeout_duration) def run_video_segmentation(source_vid, text_query, frame_limit, time_limit): if not source_vid or not text_query: raise gr.Error("Missing video or prompt.") try: active_model, active_processor = load_segmentation_model("vid_seg_model") video_cap = cv2.VideoCapture(source_vid) vid_fps = video_cap.get(cv2.CAP_PROP_FPS) vid_w = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) vid_h = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) video_frames = [] counter = 0 while video_cap.isOpened(): ret, frame = video_cap.read() if not ret or (frame_limit > 0 and counter >= frame_limit): break video_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) counter += 1 video_cap.release() session = active_processor.init_video_session(video=video_frames, inference_device=device, dtype=torch.bfloat16) session = active_processor.add_text_prompt(inference_session=session, text=text_query) temp_out_path = tempfile.mktemp(suffix=".mp4") video_writer = cv2.VideoWriter(temp_out_path, cv2.VideoWriter_fourcc(*'mp4v'), vid_fps, (vid_w, vid_h)) for model_out in active_model.propagate_in_video_iterator(inference_session=session, max_frame_num_to_track=len(video_frames)): post_processed = active_processor.postprocess_outputs(session, model_out) f_idx = model_out.frame_idx original_pil = Image.fromarray(video_frames[f_idx]) if 'masks' in post_processed: detected_masks = post_processed['masks'] if detected_masks.ndim == 4: detected_masks = detected_masks.squeeze(1) final_frame = apply_mask_overlay(original_pil, detected_masks) else: final_frame = original_pil video_writer.write(cv2.cvtColor(np.array(final_frame), cv2.COLOR_RGB2BGR)) video_writer.release() return temp_out_path, "Video processing completed successfully." except Exception as e: return None, f"Error during video processing: {str(e)}" custom_css=""" #col-container { margin: 0 auto; max-width: 1100px; } #main-title h1 { font-size: 2.1em !important; } """ with gr.Blocks(css=custom_css, theme=app_theme) as main_interface: with gr.Column(elem_id="col-container"): gr.Markdown("# **SAM3: Segment Anything Model 3**", elem_id="main-title") with gr.Tabs(): with gr.Tab("Image Segmentation"): with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(label="Source Image", type="pil", height=350) txt_prompt_img = gr.Textbox(label="Text Description", placeholder="e.g., cat, face, car wheel") with gr.Accordion("Advanced Settings", open=False): conf_slider = gr.Slider(0.0, 1.0, value=0.45, step=0.05, label="Confidence Threshold") btn_process_img = gr.Button("Segment Image", variant="primary") with gr.Column(scale=1.5): image_result = gr.AnnotatedImage(label="Segmented Result", height=450) gr.Examples( examples=[ ["examples/player.jpg", "player in white", 0.5], ], inputs=[image_input, txt_prompt_img, conf_slider], outputs=[image_result], fn=run_image_segmentation, cache_examples=False, label="Image Examples" ) btn_process_img.click( fn=run_image_segmentation, inputs=[image_input, txt_prompt_img, conf_slider], outputs=[image_result] ) with gr.Tab("Video Segmentation"): with gr.Row(): with gr.Column(): video_input = gr.Video(label="Source Video", format="mp4") txt_prompt_vid = gr.Textbox(label="Text Description", placeholder="e.g., person running, red car") with gr.Row(): frame_limiter = gr.Slider(10, 500, value=60, step=10, label="Max Frames") time_limiter = gr.Radio([60, 120, 180], value=60, label="Timeout (seconds)") btn_process_vid = gr.Button("Segment Video", variant="primary") with gr.Column(): video_result = gr.Video(label="Processed Video") process_status = gr.Textbox(label="System Status", interactive=False) gr.Examples( examples=[ ["examples/sample_video.mp4", "ball", 60, 60], ], inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter], outputs=[video_result, process_status], fn=run_video_segmentation, cache_examples=False, label="Video Examples" ) btn_process_vid.click( run_video_segmentation, inputs=[video_input, txt_prompt_vid, frame_limiter, time_limiter], outputs=[video_result, process_status] ) if __name__ == "__main__": main_interface.launch(ssr_mode=False, show_error=True)