Spaces:
Running
on
Zero
Running
on
Zero
| # Authors: Hui Ren (rhfeiyang.github.io) | |
| import os | |
| import sys | |
| import numpy as np | |
| from PIL import Image | |
| import pickle | |
| sys.path.append(os.path.join(os.path.dirname(__file__), "../../")) | |
| from custom_datasets.sam import SamDataset | |
| from utils.art_filter import Art_filter | |
| import torch | |
| from matplotlib import pyplot as plt | |
| import math | |
| import argparse | |
| import socket | |
| import time | |
| from tqdm import tqdm | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Filter the sam dataset") | |
| parser.add_argument("--check", action="store_true", help="Check the complete") | |
| parser.add_argument("--mode", default="clip_logit", choices=["clip_logit_update","clip_logit", "clip_filt", "caption_filt", "gather_result","caption_flit_append"]) | |
| parser.add_argument("--start_idx", default=0, type=int, help="Start index") | |
| parser.add_argument("--end_idx", default=9e10, type=int, help="Start index") | |
| args = parser.parse_args() | |
| return args | |
| def main(args): | |
| filter = Art_filter() | |
| if args.mode == "caption_filt" or args.mode == "gather_result": | |
| filter.clip_filter = None | |
| torch.cuda.empty_cache() | |
| caption_folder_path = "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/clip_dissection/SAM/subset/captions" | |
| image_folder_path = "/data/vision/torralba/selfmanaged/torralba/scratch/jomat/sam_dataset/nfs-data/sam/images" | |
| id_dict_dir = "/data/vision/torralba/selfmanaged/torralba/scratch/jomat/sam_dataset/sam_ids/8.16/id_dict" | |
| filt_dir = "/data/vision/torralba/selfmanaged/torralba/scratch/jomat/sam_dataset/filt_result" | |
| def collate_fn(examples): | |
| # {"image": image, "id":id} | |
| ret = {} | |
| if "image" in examples[0]: | |
| pixel_values = [example["image"] for example in examples] | |
| ret["images"] = pixel_values | |
| if "text" in examples[0]: | |
| prompts = [example["text"] for example in examples] | |
| ret["text"] = prompts | |
| id = [example["id"] for example in examples] | |
| ret["ids"] = id | |
| return ret | |
| error_files=[] | |
| val_set = ["sa_000000"] | |
| result_check_set = ["sa_000020"] | |
| all_remain_ids=[] | |
| all_remain_ids_train=[] | |
| all_remain_ids_val=[] | |
| all_filtered_id_num = 0 | |
| remain_feat_num = 0 | |
| remain_caption_num = 0 | |
| filter_feat_num = 0 | |
| filter_caption_num = 0 | |
| for idx,file in tqdm(enumerate(sorted(os.listdir(id_dict_dir)))): | |
| if idx < args.start_idx or idx >= args.end_idx: | |
| continue | |
| if file.endswith(".pickle") and not file.startswith("all"): | |
| print("=====================================") | |
| print(file,flush=True) | |
| save_dir = os.path.join(filt_dir, file.replace("_id_dict.pickle", "")) | |
| if not os.path.exists(save_dir): | |
| os.makedirs(save_dir, exist_ok=True) | |
| id_dict_file = os.path.join(id_dict_dir, file) | |
| with open(id_dict_file, 'rb') as f: | |
| id_dict = pickle.load(f) | |
| ids = list(id_dict.keys()) | |
| dataset = SamDataset(image_folder_path, caption_folder_path, id_file=ids, id_dict_file=id_dict_file) | |
| # dataset = SamDataset(image_folder_path, caption_folder_path, id_file=[10061410, 10076945, 10310013,1042012, 4487809, 4541052], id_dict_file="/data/vision/torralba/selfmanaged/torralba/scratch/jomat/sam_dataset/images/id_dict/all_id_dict.pickle") | |
| dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn) | |
| clip_logits = None | |
| clip_logits_file = os.path.join(save_dir, "clip_logits_result.pickle") | |
| clip_filt_file = os.path.join(save_dir, "clip_filt_result.pickle") | |
| caption_filt_file = os.path.join(save_dir, "caption_filt_result.pickle") | |
| if args.mode == "clip_feat": | |
| compute_new = False | |
| clip_logits = {} | |
| if os.path.exists(clip_logits_file): | |
| with open(clip_logits_file, 'rb') as f: | |
| clip_logits = pickle.load(f) | |
| if "image_features" not in clip_logits: | |
| compute_new = True | |
| else: | |
| compute_new=True | |
| if compute_new: | |
| if clip_logits == '': | |
| clip_logits = {} | |
| print(f"compute clip_feat {file}",flush=True) | |
| clip_feature_ret = filter.clip_feature(dataloader) | |
| clip_logits["image_features"] = clip_feature_ret["clip_features"] | |
| if "ids" in clip_logits: | |
| assert clip_feature_ret["ids"] == clip_logits["ids"] | |
| else: | |
| clip_logits["ids"] = clip_feature_ret["ids"] | |
| with open(clip_logits_file, 'wb') as f: | |
| pickle.dump(clip_logits, f) | |
| print(f"clip_feat_result saved to {clip_logits_file}",flush=True) | |
| else: | |
| print(f"skip {clip_logits_file}",flush=True) | |
| if args.mode == "clip_logit": | |
| # if clip_logit: | |
| if os.path.exists(clip_logits_file): | |
| try: | |
| with open(clip_logits_file, 'rb') as f: | |
| clip_logits = pickle.load(f) | |
| except: | |
| continue | |
| skip = True | |
| if args.check and clip_logits=="": | |
| skip = False | |
| else: | |
| skip = False | |
| # skip = False | |
| if not skip: | |
| # os.makedirs(os.path.join(save_dir, "tmp"), exist_ok=True) | |
| with open(clip_logits_file, 'wb') as f: | |
| pickle.dump("", f) | |
| try: | |
| clip_logits = filter.clip_logit(dataloader) | |
| except: | |
| print(f"Error in clip_logit {file}",flush=True) | |
| continue | |
| with open(clip_logits_file, 'wb') as f: | |
| pickle.dump(clip_logits, f) | |
| print(f"clip_logits_result saved to {clip_logits_file}",flush=True) | |
| else: | |
| print(f"skip {clip_logits_file}",flush=True) | |
| if args.mode == "clip_logit_update": | |
| if os.path.exists(clip_logits_file): | |
| with open(clip_logits_file, 'rb') as f: | |
| clip_logits = pickle.load(f) | |
| else: | |
| print(f"{clip_logits_file} not exist",flush=True) | |
| continue | |
| if clip_logits == "": | |
| print(f"skip {clip_logits_file}",flush=True) | |
| continue | |
| ret = filter.clip_logit_by_feat(clip_logits["clip_features"]) | |
| # assert (clip_logits["clip_logits"] - ret["clip_logits"]).abs().max() < 0.01 | |
| clip_logits["clip_logits"] = ret["clip_logits"] | |
| clip_logits["text"] = ret["text"] | |
| with open(clip_logits_file, 'wb') as f: | |
| pickle.dump(clip_logits, f) | |
| if args.mode == "clip_filt": | |
| # if os.path.exists(clip_filt_file): | |
| # with open(clip_filt_file, 'rb') as f: | |
| # ret = pickle.load(f) | |
| # else: | |
| if clip_logits is None: | |
| try: | |
| with open(clip_logits_file, 'rb') as f: | |
| clip_logits = pickle.load(f) | |
| except: | |
| print(f"Error in loading {clip_logits_file}",flush=True) | |
| error_files.append(clip_logits_file) | |
| continue | |
| if clip_logits == "": | |
| print(f"skip {clip_logits_file}",flush=True) | |
| error_files.append(clip_logits_file) | |
| continue | |
| clip_filt_result = filter.clip_filt(clip_logits) | |
| with open(clip_filt_file, 'wb') as f: | |
| pickle.dump(clip_filt_result, f) | |
| print(f"clip_filt_result saved to {clip_filt_file}",flush=True) | |
| if args.mode == "caption_filt": | |
| if os.path.exists(caption_filt_file): | |
| try: | |
| with open(caption_filt_file, 'rb') as f: | |
| ret = pickle.load(f) | |
| except: | |
| continue | |
| skip = True | |
| if args.check and ret=="": | |
| skip = False | |
| # os.remove(caption_filt_file) | |
| print(f"empty {caption_filt_file}",flush=True) | |
| # skip = True | |
| else: | |
| skip = False | |
| if not skip: | |
| with open(caption_filt_file, 'wb') as f: | |
| pickle.dump("", f) | |
| # try: | |
| ret = filter.caption_filt(dataloader) | |
| # except: | |
| # print(f"Error in filtering {file}",flush=True) | |
| # continue | |
| with open(caption_filt_file, 'wb') as f: | |
| pickle.dump(ret, f) | |
| print(f"caption_filt_result saved to {caption_filt_file}",flush=True) | |
| else: | |
| print(f"skip {caption_filt_file}",flush=True) | |
| if args.mode == "caption_flit_append": | |
| if not os.path.exists(caption_filt_file): | |
| print(f"{caption_filt_file} not exist",flush=True) | |
| continue | |
| with open(caption_filt_file, 'rb') as f: | |
| old_caption_filt_result = pickle.load(f) | |
| skip = True | |
| for i in filter.caption_filter.filter_prompts: | |
| if i not in old_caption_filt_result["filter_prompts"]: | |
| skip = False | |
| break | |
| if skip: | |
| print(f"skip {caption_filt_file}",flush=True) | |
| continue | |
| old_remain_ids = old_caption_filt_result["remain_ids"] | |
| new_dataset = SamDataset(image_folder_path, caption_folder_path, id_file=old_remain_ids, id_dict_file=id_dict_file) | |
| new_dataloader = torch.utils.data.DataLoader(new_dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn) | |
| ret = filter.caption_filt(new_dataloader) | |
| old_caption_filt_result["remain_ids"] = ret["remain_ids"] | |
| old_caption_filt_result["filtered_ids"].extend(ret["filtered_ids"]) | |
| new_filter_count = ret["filter_count"].copy() | |
| for i in range(len(old_caption_filt_result["filter_count"])): | |
| new_filter_count[i] += old_caption_filt_result["filter_count"][i] | |
| old_caption_filt_result["filter_count"] = new_filter_count | |
| old_caption_filt_result["filter_prompts"] = ret["filter_prompts"] | |
| with open(caption_filt_file, 'wb') as f: | |
| pickle.dump(old_caption_filt_result, f) | |
| if args.mode == "gather_result": | |
| with open(clip_filt_file, 'rb') as f: | |
| clip_filt_result = pickle.load(f) | |
| with open(caption_filt_file, 'rb') as f: | |
| caption_filt_result = pickle.load(f) | |
| caption_filtered_ids = [i[0] for i in caption_filt_result["filtered_ids"]] | |
| all_filtered_id_num += len(set(clip_filt_result["filtered_ids"]) | set(caption_filtered_ids) ) | |
| remain_feat_num += len(clip_filt_result["remain_ids"]) | |
| remain_caption_num += len(caption_filt_result["remain_ids"]) | |
| filter_feat_num += len(clip_filt_result["filtered_ids"]) | |
| filter_caption_num += len(caption_filtered_ids) | |
| remain_ids = set(clip_filt_result["remain_ids"]) & set(caption_filt_result["remain_ids"]) | |
| remain_ids = list(remain_ids) | |
| remain_ids.sort() | |
| # with open(os.path.join(save_dir, "remain_ids.pickle"), 'wb') as f: | |
| # pickle.dump(remain_ids, f) | |
| # print(f"remain_ids saved to {save_dir}/remain_ids.pickle",flush=True) | |
| all_remain_ids.extend(remain_ids) | |
| if file.replace("_id_dict.pickle","") in val_set: | |
| all_remain_ids_val.extend(remain_ids) | |
| else: | |
| all_remain_ids_train.extend(remain_ids) | |
| if args.mode == "gather_result": | |
| print(f"filtered ids: {all_filtered_id_num}",flush=True) | |
| print(f"remain feat num: {remain_feat_num}",flush=True) | |
| print(f"remain caption num: {remain_caption_num}",flush=True) | |
| print(f"filter feat num: {filter_feat_num}",flush=True) | |
| print(f"filter caption num: {filter_caption_num}",flush=True) | |
| all_remain_ids.sort() | |
| with open(os.path.join(filt_dir, "all_remain_ids.pickle"), 'wb') as f: | |
| pickle.dump(all_remain_ids, f) | |
| with open(os.path.join(filt_dir, "all_remain_ids_train.pickle"), 'wb') as f: | |
| pickle.dump(all_remain_ids_train, f) | |
| with open(os.path.join(filt_dir, "all_remain_ids_val.pickle"), 'wb') as f: | |
| pickle.dump(all_remain_ids_val, f) | |
| print(f"all_remain_ids saved to {filt_dir}/all_remain_ids.pickle",flush=True) | |
| print(f"all_remain_ids_train saved to {filt_dir}/all_remain_ids_train.pickle",flush=True) | |
| print(f"all_remain_ids_val saved to {filt_dir}/all_remain_ids_val.pickle",flush=True) | |
| print("finished",flush=True) | |
| for file in error_files: | |
| # os.remove(file) | |
| print(file,flush=True) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| log_file = "sam_filt" | |
| idx=0 | |
| hostname = socket.gethostname() | |
| now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) | |
| while os.path.exists(f"{log_file}_{hostname}_check{args.check}_{now_time}_{idx}.log"): | |
| idx+=1 | |
| main(args) | |
| # clip_logits_analysis() | |