Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/ronaldahmed/ccl_win into main
Browse files- ccl_win.py +92 -10
ccl_win.py
CHANGED
|
@@ -15,6 +15,13 @@
|
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
# TODO: Add BibTeX citation
|
|
@@ -28,7 +35,7 @@ year={2020}
|
|
| 28 |
|
| 29 |
# TODO: Add description of the module here
|
| 30 |
_DESCRIPTION = """\
|
| 31 |
-
|
| 32 |
"""
|
| 33 |
|
| 34 |
|
|
@@ -55,11 +62,12 @@ Examples:
|
|
| 55 |
|
| 56 |
# TODO: Define external resources urls if needed
|
| 57 |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 58 |
-
|
| 59 |
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
class ccl_win(evaluate.Measurement):
|
| 62 |
"""TODO: Short description of my evaluation module."""
|
|
|
|
| 63 |
|
| 64 |
def _info(self):
|
| 65 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
@@ -71,8 +79,7 @@ class ccl_win(evaluate.Measurement):
|
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
# This defines the format of each prediction and reference
|
| 73 |
features=datasets.Features({
|
| 74 |
-
'predictions': datasets.Value('
|
| 75 |
-
'references': datasets.Value('int64'),
|
| 76 |
}),
|
| 77 |
# Homepage of the module for documentation
|
| 78 |
homepage="http://module.homepage",
|
|
@@ -86,10 +93,85 @@ class ccl_win(evaluate.Measurement):
|
|
| 86 |
# TODO: Download external resources if needed
|
| 87 |
pass
|
| 88 |
|
| 89 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
"""Returns the scores"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
"
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
+
import numpy as np
|
| 19 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 20 |
+
import getpass
|
| 21 |
+
import pdb
|
| 22 |
+
import os
|
| 23 |
+
import torch
|
| 24 |
+
from rouge_score import scoring
|
| 25 |
|
| 26 |
|
| 27 |
# TODO: Add BibTeX citation
|
|
|
|
| 35 |
|
| 36 |
# TODO: Add description of the module here
|
| 37 |
_DESCRIPTION = """\
|
| 38 |
+
local coherecence with classifier trained on the shuffle task, window=3 sentences
|
| 39 |
"""
|
| 40 |
|
| 41 |
|
|
|
|
| 62 |
|
| 63 |
# TODO: Define external resources urls if needed
|
| 64 |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 65 |
+
WINDOW_SIZE = 3
|
| 66 |
|
| 67 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 68 |
class ccl_win(evaluate.Measurement):
|
| 69 |
"""TODO: Short description of my evaluation module."""
|
| 70 |
+
|
| 71 |
|
| 72 |
def _info(self):
|
| 73 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
|
| 79 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 80 |
# This defines the format of each prediction and reference
|
| 81 |
features=datasets.Features({
|
| 82 |
+
'predictions': datasets.Value('string'),
|
|
|
|
| 83 |
}),
|
| 84 |
# Homepage of the module for documentation
|
| 85 |
homepage="http://module.homepage",
|
|
|
|
| 93 |
# TODO: Download external resources if needed
|
| 94 |
pass
|
| 95 |
|
| 96 |
+
def preprocess_adjacent_window(self,preds):
|
| 97 |
+
pred_list = []
|
| 98 |
+
lens = []
|
| 99 |
+
for pred in preds:
|
| 100 |
+
sents = pred.split("\n")
|
| 101 |
+
ns = len(sents)
|
| 102 |
+
if ns <= WINDOW_SIZE:
|
| 103 |
+
pred_list.append(pred)
|
| 104 |
+
lens.append(1)
|
| 105 |
+
else:
|
| 106 |
+
llen = 0
|
| 107 |
+
for i in range(0,ns-WINDOW_SIZE+1):
|
| 108 |
+
sss = sents[i:i+WINDOW_SIZE]
|
| 109 |
+
ss = "\n".join(sss)
|
| 110 |
+
pred_list.append(ss)
|
| 111 |
+
llen += 1
|
| 112 |
+
lens.append(llen)
|
| 113 |
+
#
|
| 114 |
+
return pred_list,lens
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def _compute(self, predictions, dataset="arxiv", batch_size: int = 16, device=None, use_aggregator=True):
|
| 119 |
"""Returns the scores"""
|
| 120 |
+
MODEL_CACHE_DIR = "/home/rcardena/.cache/huggingface/"
|
| 121 |
+
BASEDIR = "/gfs/team/nlp/users/rcardena/tools/new_evals/ccl_win"
|
| 122 |
+
if getpass.getuser() == "s1987051":
|
| 123 |
+
MODEL_CACHE_DIR="/disk/ocean/rcardenas/tools/huggingface/"
|
| 124 |
+
elif getpass.getuser() == "rcardena":
|
| 125 |
+
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface/"
|
| 126 |
+
|
| 127 |
+
if device is not None:
|
| 128 |
+
# assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
| 129 |
+
if device == "gpu":
|
| 130 |
+
device = "cuda"
|
| 131 |
+
else:
|
| 132 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 133 |
+
|
| 134 |
+
results = []
|
| 135 |
+
sent_lens = [len(x.split("\n")) for x in predictions]
|
| 136 |
+
aggregator = None
|
| 137 |
+
if use_aggregator:
|
| 138 |
+
np.random.seed(42)
|
| 139 |
+
aggregator = scoring.BootstrapAggregator()
|
| 140 |
+
|
| 141 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-large")
|
| 142 |
+
|
| 143 |
+
model = AutoModelForSequenceClassification.from_pretrained(os.path.join(BASEDIR,dataset))
|
| 144 |
+
model.to(device)
|
| 145 |
+
model.eval()
|
| 146 |
+
|
| 147 |
+
pred_list,len_by_sample = self.preprocess_adjacent_window(predictions)
|
| 148 |
+
|
| 149 |
+
scores = []
|
| 150 |
+
n_preds = len(pred_list)
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
for b in range(0,n_preds,batch_size):
|
| 153 |
+
strides = [x.lower() for x in pred_list[b:b+batch_size]]
|
| 154 |
+
tinput = tokenizer(strides,padding=True,truncation=True,max_length=512,return_tensors="pt")
|
| 155 |
+
tinput = {k:v.to(device) for k,v in tinput.items()}
|
| 156 |
+
output = model(**tinput)
|
| 157 |
+
probs = torch.softmax(output.logits,dim=-1).detach().cpu().numpy()
|
| 158 |
+
scores.extend(probs[:,0].tolist())
|
| 159 |
+
#
|
| 160 |
+
|
| 161 |
+
offset = 0
|
| 162 |
+
for i,_len in enumerate(len_by_sample):
|
| 163 |
+
score = float(np.mean(scores[offset:offset+_len])) if sent_lens[i]>1 else 0.
|
| 164 |
+
if use_aggregator:
|
| 165 |
+
aggregator.add_scores({"loc_coh_ccl": score})
|
| 166 |
+
else:
|
| 167 |
+
results.append(score)
|
| 168 |
+
offset += _len
|
| 169 |
+
#
|
| 170 |
+
outres = {}
|
| 171 |
+
if use_aggregator:
|
| 172 |
+
res = aggregator.aggregate()
|
| 173 |
+
for k in res: outres[k] = res[k].mid
|
| 174 |
+
else:
|
| 175 |
+
outres = {"loc_coh_ccl": results}
|
| 176 |
+
|
| 177 |
+
return outres
|