lenet_mnist / src /predict.py
rzimmerdev's picture
feature: Added prediction and model loading methods
abe84f3
raw
history blame
1.49 kB
#!/usr/bin/env python
# coding: utf-8
import torch
from torch import nn
import numpy as np
import plotly.express as px
from plotly.subplots import make_subplots
from trainer import LitTrainer
from models import CNN
from dataset import DatasetMNIST, load_mnist
def load_pl_net(path="../checkpoints/lightning_logs/version_26/checkpoints/epoch=9-step=1000.ckpt"):
pl_net = LitTrainer.load_from_checkpoint(path, model=CNN(1, 10))
return pl_net
def load_torch_net(path="../checkpoints/pytorch/version_0.pt"):
net = torch.load(path)
net.eval()
return net
def get_sequence(model):
fig = make_subplots(rows=2, cols=5)
i, j = 0, np.random.randint(0, 30000)
while i < 10:
x, y = dataset[j]
y_pred = model(x.to("cuda")).detach().cpu()
p = torch.max(nn.functional.softmax(y_pred, dim=0))
y_pred = int(np.argmax(y_pred))
if y_pred == i and p > 0.95:
img = np.flip(np.array(x.reshape(28, 28)), 0)
fig.add_trace(px.imshow(img).data[0], row=int(i/5)+1, col=i%5+1)
i += 1
j += 1
return fig
if __name__ == "__main__":
mnist = load_mnist("../downloads/mnist/")
dataset, test_data = DatasetMNIST(*mnist["train"]), DatasetMNIST(*mnist["test"])
print("PyTorch Lightning Network")
get_sequence(load_pl_net().to("cuda")).write_image("images/pl_net.png")
print("Manual Network")
get_sequence(load_torch_net().to("cuda")).write_image("images/pytorch_net.png")