Spaces:
Sleeping
Sleeping
| import os | |
| import utils | |
| import streamlit as st | |
| from streaming import StreamHandler | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.vectorstores import DocArrayInMemorySearch | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import OpenAIEmbeddings | |
| st.header('Chatbot for AEO ') | |
| st.write('Please upload the necessary files about AEO in the sidebar and ask questions in the chat.') | |
| class CustomDataChatbot: | |
| def __init__(self): | |
| self.oepn_ai_key = utils.configure_openai_api_key() | |
| self.openai_model = "gpt-3.5-turbo" | |
| def save_file(self, file): | |
| folder = 'tmp' | |
| if not os.path.exists(folder): | |
| os.makedirs(folder) | |
| file_path = f'./{folder}/{file.name}' | |
| with open(file_path, 'wb') as f: | |
| f.write(file.getvalue()) | |
| return file_path | |
| def setup_qa_chain(self, uploaded_files): | |
| # Load documents | |
| docs = [] | |
| for file in uploaded_files: | |
| file_path = self.save_file(file) | |
| loader = PyPDFLoader(file_path) | |
| docs.extend(loader.load()) | |
| # Split documents | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1500, | |
| chunk_overlap=200 | |
| ) | |
| splits = text_splitter.split_documents(docs) | |
| # Create embeddings and store in vectordb | |
| embeddings = OpenAIEmbeddings(openai_api_key = self.oepn_ai_key) | |
| vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings) | |
| # Define retriever | |
| retriever = vectordb.as_retriever( | |
| search_type='mmr', | |
| search_kwargs={'k':2, 'fetch_k':4} | |
| ) | |
| # Setup memory for contextual conversation | |
| memory = ConversationBufferMemory( | |
| memory_key='chat_history', | |
| return_messages=True | |
| ) | |
| # Setup LLM and QA chain | |
| llm = ChatOpenAI(model_name=self.openai_model, temperature=0, streaming=True) | |
| qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory, verbose=True) | |
| return qa_chain | |
| def main(self): | |
| # User Inputs | |
| uploaded_files = st.sidebar.file_uploader(label='Upload PDF files', type=['pdf'], accept_multiple_files=True) | |
| if not uploaded_files: | |
| st.error("Please upload PDF documents to continue!") | |
| st.stop() | |
| user_query = st.chat_input(placeholder="Ask me anything!") | |
| if uploaded_files and user_query: | |
| qa_chain = self.setup_qa_chain(uploaded_files) | |
| utils.display_msg(user_query, 'user') | |
| with st.chat_message("assistant"): | |
| st_cb = StreamHandler(st.empty()) | |
| response = qa_chain.run(user_query, callbacks=[st_cb]) | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| if __name__ == "__main__": | |
| obj = CustomDataChatbot() | |
| obj.main() |