Update modules/knowledge_base/processor.py
Browse files- modules/knowledge_base/processor.py +229 -229
modules/knowledge_base/processor.py
CHANGED
|
@@ -1,230 +1,230 @@
|
|
| 1 |
-
from typing import List, Dict, Callable, Optional
|
| 2 |
-
from
|
| 3 |
-
from langchain_community.document_loaders import (
|
| 4 |
-
DirectoryLoader,
|
| 5 |
-
UnstructuredMarkdownLoader,
|
| 6 |
-
PyPDFLoader,
|
| 7 |
-
TextLoader
|
| 8 |
-
)
|
| 9 |
-
import os
|
| 10 |
-
import requests
|
| 11 |
-
import base64
|
| 12 |
-
from PIL import Image
|
| 13 |
-
import io
|
| 14 |
-
|
| 15 |
-
class DocumentLoader:
|
| 16 |
-
"""通用文档加载器"""
|
| 17 |
-
def __init__(self, file_path: str, original_filename: str = None):
|
| 18 |
-
self.file_path = file_path
|
| 19 |
-
# 使用传入的原始文件名或者从路径提取的文件名
|
| 20 |
-
self.original_filename = original_filename or os.path.basename(file_path)
|
| 21 |
-
# 从原始文件名中获取扩展名,确保中文文件名也能正确识别文件类型
|
| 22 |
-
self.extension = os.path.splitext(self.original_filename)[1].lower()
|
| 23 |
-
self.api_key = os.getenv("API_KEY")
|
| 24 |
-
self.api_base = os.getenv("BASE_URL")
|
| 25 |
-
|
| 26 |
-
def process_image(self, image_path: str) -> str:
|
| 27 |
-
"""使用 SiliconFlow VLM 模型处理图片"""
|
| 28 |
-
try:
|
| 29 |
-
# 读取图片并转换为base64
|
| 30 |
-
with open(image_path, 'rb') as image_file:
|
| 31 |
-
image_data = image_file.read()
|
| 32 |
-
base64_image = base64.b64encode(image_data).decode('utf-8')
|
| 33 |
-
|
| 34 |
-
# 调用 SiliconFlow API
|
| 35 |
-
headers = {
|
| 36 |
-
"Authorization": f"Bearer {self.api_key}",
|
| 37 |
-
"Content-Type": "application/json"
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
response = requests.post(
|
| 41 |
-
f"{self.api_base}/chat/completions",
|
| 42 |
-
headers=headers,
|
| 43 |
-
json={
|
| 44 |
-
"model": "Qwen/Qwen2.5-VL-72B-Instruct",
|
| 45 |
-
"messages": [
|
| 46 |
-
{
|
| 47 |
-
"role": "user",
|
| 48 |
-
"content": [
|
| 49 |
-
{
|
| 50 |
-
"type": "image_url",
|
| 51 |
-
"image_url": {
|
| 52 |
-
"url": f"data:image/jpeg;base64,{base64_image}",
|
| 53 |
-
"detail": "high"
|
| 54 |
-
}
|
| 55 |
-
},
|
| 56 |
-
{
|
| 57 |
-
"type": "text",
|
| 58 |
-
"text": "请详细描述这张图片的内容,包括主要对象、场景、活动、颜色、布局等关键信息。"
|
| 59 |
-
}
|
| 60 |
-
]
|
| 61 |
-
}
|
| 62 |
-
],
|
| 63 |
-
"temperature": 0.7,
|
| 64 |
-
"max_tokens": 500
|
| 65 |
-
}
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
if response.status_code != 200:
|
| 69 |
-
raise Exception(f"图片处理API调用失败: {response.text}")
|
| 70 |
-
|
| 71 |
-
description = response.json()["choices"][0]["message"]["content"]
|
| 72 |
-
return description
|
| 73 |
-
|
| 74 |
-
except Exception as e:
|
| 75 |
-
print(f"处理图片时出错: {str(e)}")
|
| 76 |
-
return "图片处理失败"
|
| 77 |
-
|
| 78 |
-
def load(self):
|
| 79 |
-
try:
|
| 80 |
-
print(f"正在加载文件: {self.file_path}, 原始文件名: {self.original_filename}, 扩展名: {self.extension}")
|
| 81 |
-
|
| 82 |
-
if self.extension == '.md':
|
| 83 |
-
try:
|
| 84 |
-
loader = UnstructuredMarkdownLoader(self.file_path, encoding='utf-8')
|
| 85 |
-
return loader.load()
|
| 86 |
-
except UnicodeDecodeError:
|
| 87 |
-
# 如果UTF-8失败,尝试GBK
|
| 88 |
-
loader = UnstructuredMarkdownLoader(self.file_path, encoding='gbk')
|
| 89 |
-
return loader.load()
|
| 90 |
-
elif self.extension == '.pdf':
|
| 91 |
-
loader = PyPDFLoader(self.file_path)
|
| 92 |
-
return loader.load()
|
| 93 |
-
elif self.extension == '.txt':
|
| 94 |
-
try:
|
| 95 |
-
loader = TextLoader(self.file_path, encoding='utf-8')
|
| 96 |
-
return loader.load()
|
| 97 |
-
except UnicodeDecodeError:
|
| 98 |
-
# 如果UTF-8失败,尝试GBK
|
| 99 |
-
loader = TextLoader(self.file_path, encoding='gbk')
|
| 100 |
-
return loader.load()
|
| 101 |
-
elif self.extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
|
| 102 |
-
# 处理图片
|
| 103 |
-
description = self.process_image(self.file_path)
|
| 104 |
-
# 创建一个包含图片描述的文档
|
| 105 |
-
from langchain.schema import Document
|
| 106 |
-
doc = Document(
|
| 107 |
-
page_content=description,
|
| 108 |
-
metadata={
|
| 109 |
-
'source': self.file_path,
|
| 110 |
-
'file_name': self.original_filename, # 使用原始文件名
|
| 111 |
-
'img_url': os.path.abspath(self.file_path) # 存储图片的绝对路径
|
| 112 |
-
}
|
| 113 |
-
)
|
| 114 |
-
return [doc]
|
| 115 |
-
else:
|
| 116 |
-
print(f"不支持的文件扩展名: {self.extension}")
|
| 117 |
-
raise ValueError(f"不支持的文件格式: {self.extension}")
|
| 118 |
-
|
| 119 |
-
except UnicodeDecodeError:
|
| 120 |
-
# 如果默认编码处理失败,尝试其他编码
|
| 121 |
-
print(f"文件编码错误,尝试其他编码: {self.file_path}")
|
| 122 |
-
if self.extension in ['.md', '.txt']:
|
| 123 |
-
try:
|
| 124 |
-
loader = TextLoader(self.file_path, encoding='gbk')
|
| 125 |
-
return loader.load()
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print(f"尝试GBK编码也失败: {str(e)}")
|
| 128 |
-
raise
|
| 129 |
-
except Exception as e:
|
| 130 |
-
print(f"加载文件 {self.file_path} 时出错: {str(e)}")
|
| 131 |
-
import traceback
|
| 132 |
-
traceback.print_exc()
|
| 133 |
-
raise
|
| 134 |
-
|
| 135 |
-
class DocumentProcessor:
|
| 136 |
-
def __init__(self):
|
| 137 |
-
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 138 |
-
chunk_size=1000,
|
| 139 |
-
chunk_overlap=200,
|
| 140 |
-
length_function=len,
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
def get_index_name(self, path: str) -> str:
|
| 144 |
-
"""根据文件路径生成索引名称"""
|
| 145 |
-
if os.path.isdir(path):
|
| 146 |
-
# 如果是目录,使用目录名
|
| 147 |
-
return f"rag_{os.path.basename(path).lower()}"
|
| 148 |
-
else:
|
| 149 |
-
# 如果是文件,使用文件名(不含扩展名)
|
| 150 |
-
return f"rag_{os.path.splitext(os.path.basename(path))[0].lower()}"
|
| 151 |
-
|
| 152 |
-
def process(self, path: str, progress_callback: Optional[Callable] = None, original_filename: str = None) -> List[Dict]:
|
| 153 |
-
"""
|
| 154 |
-
加载并处理文档,支持目录或单个文件
|
| 155 |
-
参数:
|
| 156 |
-
path: 文档路径
|
| 157 |
-
progress_callback: 进度回调函数,用于报告处理进度
|
| 158 |
-
original_filename: 原始文件名(包括中文)
|
| 159 |
-
返回:处理后的文档列表
|
| 160 |
-
"""
|
| 161 |
-
if os.path.isdir(path):
|
| 162 |
-
documents = []
|
| 163 |
-
total_files = sum([len(files) for _, _, files in os.walk(path)])
|
| 164 |
-
processed_files = 0
|
| 165 |
-
processed_size = 0
|
| 166 |
-
|
| 167 |
-
for root, _, files in os.walk(path):
|
| 168 |
-
for file in files:
|
| 169 |
-
file_path = os.path.join(root, file)
|
| 170 |
-
try:
|
| 171 |
-
# 更新处理进度
|
| 172 |
-
if progress_callback:
|
| 173 |
-
file_size = os.path.getsize(file_path)
|
| 174 |
-
processed_size += file_size
|
| 175 |
-
processed_files += 1
|
| 176 |
-
progress_callback(processed_size, f"处理文件 {processed_files}/{total_files}: {file}")
|
| 177 |
-
|
| 178 |
-
# 为目录中的每个文件,传递原始文件名
|
| 179 |
-
loader = DocumentLoader(file_path, original_filename=file)
|
| 180 |
-
docs = loader.load()
|
| 181 |
-
# 添加文件名到metadata
|
| 182 |
-
for doc in docs:
|
| 183 |
-
doc.metadata['file_name'] = file # 使用原始文件名
|
| 184 |
-
documents.extend(docs)
|
| 185 |
-
except Exception as e:
|
| 186 |
-
print(f"警告:加载文件 {file_path} 时出错: {str(e)}")
|
| 187 |
-
continue
|
| 188 |
-
else:
|
| 189 |
-
try:
|
| 190 |
-
if progress_callback:
|
| 191 |
-
file_size = os.path.getsize(path)
|
| 192 |
-
progress_callback(file_size * 0.3, f"加载文件: {original_filename or os.path.basename(path)}")
|
| 193 |
-
|
| 194 |
-
# 为单个文件,传递原始文件名
|
| 195 |
-
loader = DocumentLoader(path, original_filename=original_filename)
|
| 196 |
-
documents = loader.load()
|
| 197 |
-
|
| 198 |
-
# 更新进度
|
| 199 |
-
if progress_callback:
|
| 200 |
-
progress_callback(file_size * 0.6, f"处理文件内容...")
|
| 201 |
-
|
| 202 |
-
# 使用原始文件名而不是存储的文件名
|
| 203 |
-
file_name = original_filename or os.path.basename(path)
|
| 204 |
-
for doc in documents:
|
| 205 |
-
doc.metadata['file_name'] = file_name
|
| 206 |
-
except Exception as e:
|
| 207 |
-
print(f"加载文件时出错: {str(e)}")
|
| 208 |
-
raise
|
| 209 |
-
|
| 210 |
-
# 分块
|
| 211 |
-
chunks = self.text_splitter.split_documents(documents)
|
| 212 |
-
|
| 213 |
-
# 更新进度
|
| 214 |
-
if progress_callback:
|
| 215 |
-
if os.path.isdir(path):
|
| 216 |
-
progress_callback(processed_size, f"文档分块完成,共{len(chunks)}个文档片段")
|
| 217 |
-
else:
|
| 218 |
-
file_size = os.path.getsize(path)
|
| 219 |
-
progress_callback(file_size * 0.9, f"文档分块完成,共{len(chunks)}个文档片段")
|
| 220 |
-
|
| 221 |
-
# 处理成统一格式
|
| 222 |
-
processed_docs = []
|
| 223 |
-
for i, chunk in enumerate(chunks):
|
| 224 |
-
processed_docs.append({
|
| 225 |
-
'id': f'doc_{i}',
|
| 226 |
-
'content': chunk.page_content,
|
| 227 |
-
'metadata': chunk.metadata
|
| 228 |
-
})
|
| 229 |
-
|
| 230 |
return processed_docs
|
|
|
|
| 1 |
+
from typing import List, Dict, Callable, Optional
|
| 2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain_community.document_loaders import (
|
| 4 |
+
DirectoryLoader,
|
| 5 |
+
UnstructuredMarkdownLoader,
|
| 6 |
+
PyPDFLoader,
|
| 7 |
+
TextLoader
|
| 8 |
+
)
|
| 9 |
+
import os
|
| 10 |
+
import requests
|
| 11 |
+
import base64
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import io
|
| 14 |
+
|
| 15 |
+
class DocumentLoader:
|
| 16 |
+
"""通用文档加载器"""
|
| 17 |
+
def __init__(self, file_path: str, original_filename: str = None):
|
| 18 |
+
self.file_path = file_path
|
| 19 |
+
# 使用传入的原始文件名或者从路径提取的文件名
|
| 20 |
+
self.original_filename = original_filename or os.path.basename(file_path)
|
| 21 |
+
# 从原始文件名中获取扩展名,确保中文文件名也能正确识别文件类型
|
| 22 |
+
self.extension = os.path.splitext(self.original_filename)[1].lower()
|
| 23 |
+
self.api_key = os.getenv("API_KEY")
|
| 24 |
+
self.api_base = os.getenv("BASE_URL")
|
| 25 |
+
|
| 26 |
+
def process_image(self, image_path: str) -> str:
|
| 27 |
+
"""使用 SiliconFlow VLM 模型处理图片"""
|
| 28 |
+
try:
|
| 29 |
+
# 读取图片并转换为base64
|
| 30 |
+
with open(image_path, 'rb') as image_file:
|
| 31 |
+
image_data = image_file.read()
|
| 32 |
+
base64_image = base64.b64encode(image_data).decode('utf-8')
|
| 33 |
+
|
| 34 |
+
# 调用 SiliconFlow API
|
| 35 |
+
headers = {
|
| 36 |
+
"Authorization": f"Bearer {self.api_key}",
|
| 37 |
+
"Content-Type": "application/json"
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
response = requests.post(
|
| 41 |
+
f"{self.api_base}/chat/completions",
|
| 42 |
+
headers=headers,
|
| 43 |
+
json={
|
| 44 |
+
"model": "Qwen/Qwen2.5-VL-72B-Instruct",
|
| 45 |
+
"messages": [
|
| 46 |
+
{
|
| 47 |
+
"role": "user",
|
| 48 |
+
"content": [
|
| 49 |
+
{
|
| 50 |
+
"type": "image_url",
|
| 51 |
+
"image_url": {
|
| 52 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
| 53 |
+
"detail": "high"
|
| 54 |
+
}
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"type": "text",
|
| 58 |
+
"text": "请详细描述这张图片的内容,包括主要对象、场景、活动、颜色、布局等关键信息。"
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"temperature": 0.7,
|
| 64 |
+
"max_tokens": 500
|
| 65 |
+
}
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
if response.status_code != 200:
|
| 69 |
+
raise Exception(f"图片处理API调用失败: {response.text}")
|
| 70 |
+
|
| 71 |
+
description = response.json()["choices"][0]["message"]["content"]
|
| 72 |
+
return description
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"处理图片时出错: {str(e)}")
|
| 76 |
+
return "图片处理失败"
|
| 77 |
+
|
| 78 |
+
def load(self):
|
| 79 |
+
try:
|
| 80 |
+
print(f"正在加载文件: {self.file_path}, 原始文件名: {self.original_filename}, 扩展名: {self.extension}")
|
| 81 |
+
|
| 82 |
+
if self.extension == '.md':
|
| 83 |
+
try:
|
| 84 |
+
loader = UnstructuredMarkdownLoader(self.file_path, encoding='utf-8')
|
| 85 |
+
return loader.load()
|
| 86 |
+
except UnicodeDecodeError:
|
| 87 |
+
# 如果UTF-8失败,尝试GBK
|
| 88 |
+
loader = UnstructuredMarkdownLoader(self.file_path, encoding='gbk')
|
| 89 |
+
return loader.load()
|
| 90 |
+
elif self.extension == '.pdf':
|
| 91 |
+
loader = PyPDFLoader(self.file_path)
|
| 92 |
+
return loader.load()
|
| 93 |
+
elif self.extension == '.txt':
|
| 94 |
+
try:
|
| 95 |
+
loader = TextLoader(self.file_path, encoding='utf-8')
|
| 96 |
+
return loader.load()
|
| 97 |
+
except UnicodeDecodeError:
|
| 98 |
+
# 如果UTF-8失败,尝试GBK
|
| 99 |
+
loader = TextLoader(self.file_path, encoding='gbk')
|
| 100 |
+
return loader.load()
|
| 101 |
+
elif self.extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
|
| 102 |
+
# 处理图片
|
| 103 |
+
description = self.process_image(self.file_path)
|
| 104 |
+
# 创建一个包含图片描述的文档
|
| 105 |
+
from langchain.schema import Document
|
| 106 |
+
doc = Document(
|
| 107 |
+
page_content=description,
|
| 108 |
+
metadata={
|
| 109 |
+
'source': self.file_path,
|
| 110 |
+
'file_name': self.original_filename, # 使用原始文件名
|
| 111 |
+
'img_url': os.path.abspath(self.file_path) # 存储图片的绝对路径
|
| 112 |
+
}
|
| 113 |
+
)
|
| 114 |
+
return [doc]
|
| 115 |
+
else:
|
| 116 |
+
print(f"不支持的文件扩展名: {self.extension}")
|
| 117 |
+
raise ValueError(f"不支持的文件格式: {self.extension}")
|
| 118 |
+
|
| 119 |
+
except UnicodeDecodeError:
|
| 120 |
+
# 如果默认编码处理失败,尝试其他编码
|
| 121 |
+
print(f"文件编码错误,尝试其他编码: {self.file_path}")
|
| 122 |
+
if self.extension in ['.md', '.txt']:
|
| 123 |
+
try:
|
| 124 |
+
loader = TextLoader(self.file_path, encoding='gbk')
|
| 125 |
+
return loader.load()
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"尝试GBK编码也失败: {str(e)}")
|
| 128 |
+
raise
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"加载文件 {self.file_path} 时出错: {str(e)}")
|
| 131 |
+
import traceback
|
| 132 |
+
traceback.print_exc()
|
| 133 |
+
raise
|
| 134 |
+
|
| 135 |
+
class DocumentProcessor:
|
| 136 |
+
def __init__(self):
|
| 137 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 138 |
+
chunk_size=1000,
|
| 139 |
+
chunk_overlap=200,
|
| 140 |
+
length_function=len,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
def get_index_name(self, path: str) -> str:
|
| 144 |
+
"""根据文件路径生成索引名称"""
|
| 145 |
+
if os.path.isdir(path):
|
| 146 |
+
# 如果是目录,使用目录名
|
| 147 |
+
return f"rag_{os.path.basename(path).lower()}"
|
| 148 |
+
else:
|
| 149 |
+
# 如果是文件,使用文件名(不含扩展名)
|
| 150 |
+
return f"rag_{os.path.splitext(os.path.basename(path))[0].lower()}"
|
| 151 |
+
|
| 152 |
+
def process(self, path: str, progress_callback: Optional[Callable] = None, original_filename: str = None) -> List[Dict]:
|
| 153 |
+
"""
|
| 154 |
+
加载并处理文档,支持目录或单个文件
|
| 155 |
+
参数:
|
| 156 |
+
path: 文档路径
|
| 157 |
+
progress_callback: 进度回调函数,用于报告处理进度
|
| 158 |
+
original_filename: 原始文件名(包括中文)
|
| 159 |
+
返回:处理后的文档列表
|
| 160 |
+
"""
|
| 161 |
+
if os.path.isdir(path):
|
| 162 |
+
documents = []
|
| 163 |
+
total_files = sum([len(files) for _, _, files in os.walk(path)])
|
| 164 |
+
processed_files = 0
|
| 165 |
+
processed_size = 0
|
| 166 |
+
|
| 167 |
+
for root, _, files in os.walk(path):
|
| 168 |
+
for file in files:
|
| 169 |
+
file_path = os.path.join(root, file)
|
| 170 |
+
try:
|
| 171 |
+
# 更新处理进度
|
| 172 |
+
if progress_callback:
|
| 173 |
+
file_size = os.path.getsize(file_path)
|
| 174 |
+
processed_size += file_size
|
| 175 |
+
processed_files += 1
|
| 176 |
+
progress_callback(processed_size, f"处理文件 {processed_files}/{total_files}: {file}")
|
| 177 |
+
|
| 178 |
+
# 为目录中的每个文件,传递原始文件名
|
| 179 |
+
loader = DocumentLoader(file_path, original_filename=file)
|
| 180 |
+
docs = loader.load()
|
| 181 |
+
# 添加文件名到metadata
|
| 182 |
+
for doc in docs:
|
| 183 |
+
doc.metadata['file_name'] = file # 使用原始文件名
|
| 184 |
+
documents.extend(docs)
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"警告:加载文件 {file_path} 时出错: {str(e)}")
|
| 187 |
+
continue
|
| 188 |
+
else:
|
| 189 |
+
try:
|
| 190 |
+
if progress_callback:
|
| 191 |
+
file_size = os.path.getsize(path)
|
| 192 |
+
progress_callback(file_size * 0.3, f"加载文件: {original_filename or os.path.basename(path)}")
|
| 193 |
+
|
| 194 |
+
# 为单个文件,传递原始文件名
|
| 195 |
+
loader = DocumentLoader(path, original_filename=original_filename)
|
| 196 |
+
documents = loader.load()
|
| 197 |
+
|
| 198 |
+
# 更新进度
|
| 199 |
+
if progress_callback:
|
| 200 |
+
progress_callback(file_size * 0.6, f"处理文件内容...")
|
| 201 |
+
|
| 202 |
+
# 使用原始文件名而不是存储的文件名
|
| 203 |
+
file_name = original_filename or os.path.basename(path)
|
| 204 |
+
for doc in documents:
|
| 205 |
+
doc.metadata['file_name'] = file_name
|
| 206 |
+
except Exception as e:
|
| 207 |
+
print(f"加载文件时出错: {str(e)}")
|
| 208 |
+
raise
|
| 209 |
+
|
| 210 |
+
# 分块
|
| 211 |
+
chunks = self.text_splitter.split_documents(documents)
|
| 212 |
+
|
| 213 |
+
# 更新进度
|
| 214 |
+
if progress_callback:
|
| 215 |
+
if os.path.isdir(path):
|
| 216 |
+
progress_callback(processed_size, f"文档分块完成,共{len(chunks)}个文档片段")
|
| 217 |
+
else:
|
| 218 |
+
file_size = os.path.getsize(path)
|
| 219 |
+
progress_callback(file_size * 0.9, f"文档分块完成,共{len(chunks)}个文档片段")
|
| 220 |
+
|
| 221 |
+
# 处理成统一格式
|
| 222 |
+
processed_docs = []
|
| 223 |
+
for i, chunk in enumerate(chunks):
|
| 224 |
+
processed_docs.append({
|
| 225 |
+
'id': f'doc_{i}',
|
| 226 |
+
'content': chunk.page_content,
|
| 227 |
+
'metadata': chunk.metadata
|
| 228 |
+
})
|
| 229 |
+
|
| 230 |
return processed_docs
|