AI_Text_Authenticator / processors /text_processor.py
satyaki-mitra's picture
UI fixed and DetectGPT renamed
3b1e6c7
raw
history blame
20 kB
# DEPENDENCIES
import re
import unicodedata
from typing import Any
from typing import List
from typing import Dict
from typing import Tuple
from loguru import logger
from typing import Optional
from dataclasses import dataclass
@dataclass
class ProcessedText:
"""
Container for processed text with metadata
"""
original_text : str
cleaned_text : str
sentences : List[str]
words : List[str]
paragraphs : List[str]
char_count : int
word_count : int
sentence_count : int
paragraph_count : int
avg_sentence_length: float
avg_word_length : float
is_valid : bool
validation_errors : List[str]
metadata : Dict[str, Any]
def to_dict(self) -> Dict[str, Any]:
"""
Convert to dictionary for JSON serialization
"""
return {"original_length" : len(self.original_text),
"cleaned_length" : len(self.cleaned_text),
"char_count" : self.char_count,
"word_count" : self.word_count,
"sentence_count" : self.sentence_count,
"paragraph_count" : self.paragraph_count,
"avg_sentence_length" : round(self.avg_sentence_length, 2),
"avg_word_length" : round(self.avg_word_length, 2),
"is_valid" : self.is_valid,
"validation_errors" : self.validation_errors,
"metadata" : self.metadata,
}
class TextProcessor:
"""
Handles text cleaning, normalization, sentence splitting, and preprocessing for AI detection metrics
Features::
- Unicode normalization
- Smart sentence splitting (handles abbreviations, decimals, etc.)
- Whitespace normalization
- Special character handling
- Paragraph detection
- Word tokenization
- Text validation
- Chunk creation for long texts
"""
# Common abbreviations that shouldn't trigger sentence breaks
ABBREVIATIONS = {'dr', 'mr', 'mrs', 'ms', 'prof', 'sr', 'jr', 'ph.d', 'inc', 'ltd', 'corp', 'co', 'vs', 'etc', 'e.g', 'i.e', 'al', 'fig', 'vol', 'no', 'approx', 'est', 'min', 'max', 'avg', 'dept', 'assoc', 'bros', 'u.s', 'u.k', 'a.m', 'p.m', 'b.c', 'a.d', 'st', 'ave', 'blvd'}
# Patterns for sentence splitting
SENTENCE_ENDINGS = r'[.!?]+(?=\s+[A-Z]|$)'
# Patterns for cleaning
MULTIPLE_SPACES = re.compile(r'\s+')
MULTIPLE_NEWLINES = re.compile(r'\n{3,}')
def __init__(self, min_text_length: int = 50, max_text_length: int = 500000, preserve_formatting: bool = False, remove_urls: bool = True, remove_emails: bool = True,
normalize_unicode: bool = True, fix_encoding: bool = True):
"""
Initialize text processor
Arguments:
----------
min_text_length : Minimum acceptable text length
max_text_length : Maximum text length to process
preserve_formatting : Keep original line breaks and spacing
remove_urls : Remove URLs from text
remove_emails : Remove email addresses
normalize_unicode : Normalize Unicode characters
fix_encoding : Fix common encoding issues
"""
self.min_text_length = min_text_length
self.max_text_length = max_text_length
self.preserve_formatting = preserve_formatting
self.remove_urls = remove_urls
self.remove_emails = remove_emails
self.normalize_unicode = normalize_unicode
self.fix_encoding = fix_encoding
logger.info(f"TextProcessor initialized with min_length={min_text_length}, max_length={max_text_length}")
def process(self, text: str, **kwargs) -> ProcessedText:
"""
Main processing pipeline
Arguments:
----------
text { str } : Input text to process
**kwargs : Override default settings
Returns:
--------
{ ProcessedText } : ProcessedText object with all processed components
"""
try:
original_text = text
validation_errors = list()
# Validate input
if not text or not isinstance(text, str):
validation_errors.append("Text is empty or not a string")
return self._create_invalid_result(original_text, validation_errors)
# Initial cleaning
text = self._initial_clean(text)
# Fix encoding issues
if self.fix_encoding:
text = self._fix_encoding_issues(text)
# Normalize Unicode
if self.normalize_unicode:
text = self._normalize_unicode(text)
# Remove unwanted elements
if self.remove_urls:
text = self._remove_urls(text)
if self.remove_emails:
text = self._remove_emails(text)
# Clean whitespace
text = self._clean_whitespace(text)
# Validate length
if (len(text) < self.min_text_length):
validation_errors.append(f"Text too short: {len(text)} chars (minimum: {self.min_text_length})")
if (len(text) > self.max_text_length):
validation_errors.append(f"Text too long: {len(text)} chars (maximum: {self.max_text_length})")
text = text[:self.max_text_length]
# Extract components
sentences = self.split_sentences(text)
words = self.tokenize_words(text)
paragraphs = self.split_paragraphs(text)
# Calculate statistics
char_count = len(text)
word_count = len(words)
sent_count = len(sentences)
para_count = len(paragraphs)
avg_sent_len = word_count / sent_count if sent_count > 0 else 0
avg_word_len = sum(len(w) for w in words) / word_count if word_count > 0 else 0
# Additional validation
if (sent_count == 0):
validation_errors.append("No valid sentences found")
if (word_count < 10):
validation_errors.append(f"Too few words: {word_count} (minimum: 10)")
# Create metadata
metadata = {"has_special_chars" : self._has_special_characters(text),
"has_numbers" : any(c.isdigit() for c in text),
"has_uppercase" : any(c.isupper() for c in text),
"has_lowercase" : any(c.islower() for c in text),
"unique_words" : len(set(w.lower() for w in words)),
"lexical_diversity" : len(set(w.lower() for w in words)) / word_count if word_count > 0 else 0,
}
is_valid = len(validation_errors) == 0
return ProcessedText(original_text = original_text,
cleaned_text = text,
sentences = sentences,
words = words,
paragraphs = paragraphs,
char_count = char_count,
word_count = word_count,
sentence_count = sent_count,
paragraph_count = para_count,
avg_sentence_length = avg_sent_len,
avg_word_length = avg_word_len,
is_valid = is_valid,
validation_errors = validation_errors,
metadata = metadata,
)
except Exception as e:
logger.error(f"Error processing text: {repr(e)}")
return self._create_invalid_result(text if text else "", [f"Processing error: {str(e)}"])
def split_sentences(self, text: str) -> List[str]:
"""
Smart sentence splitting with abbreviation handling
Arguments:
----------
text { str } : Input text
Returns:
--------
{ list} : List of sentences
"""
# Protect abbreviations
protected_text = text
for abbr in self.ABBREVIATIONS:
# Replace abbreviation periods with placeholder
protected_text = re.sub(pattern = rf'\b{re.escape(abbr)}\.',
repl = abbr.replace('.', '<DOT>'),
string = protected_text,
flags = re.IGNORECASE,
)
# Protect decimal numbers (e.g., 3.14)
protected_text = re.sub(r'(\d+)\.(\d+)', r'\1<DOT>\2', protected_text)
# Protect ellipsis
protected_text = protected_text.replace('...', '<ELLIPSIS>')
# Split on sentence endings
sentences = re.split(self.SENTENCE_ENDINGS, protected_text)
# Restore protected characters and clean
cleaned_sentences = list()
for sent in sentences:
sent = sent.replace('<DOT>', '.')
sent = sent.replace('<ELLIPSIS>', '...')
sent = sent.strip()
# Only keep non-empty sentences with actual words
if (sent and (len(sent.split()) >= 2)):
# At least 2 words
cleaned_sentences.append(sent)
return cleaned_sentences
def tokenize_words(self, text: str) -> List[str]:
"""
Tokenize text into words
Arguments:
----------
text { str } : Input text
Returns:
--------
{ list } : List of words
"""
# Remove punctuation but keep apostrophes in contractions
text = re.sub(pattern = r"[^\w\s'-]",
repl = ' ',
string = text,
)
# Split on whitespace
words = text.split()
# Filter out pure numbers and single characters (except 'a' and 'I')
filtered_words = list()
for word in words:
# Remove leading/trailing quotes and hyphens
word = word.strip("'-")
if word and (len(word) > 1 or word.lower() in ['a', 'i']):
if not word.replace('-', '').replace("'", '').isdigit():
filtered_words.append(word)
return filtered_words
def split_paragraphs(self, text: str) -> List[str]:
"""
Split text into paragraphs
Arguments:
----------
text { str } : Input text
Returns:
--------
{ list } : List of paragraphs
"""
# Split on double newlines or more
paragraphs = re.split(r'\n\s*\n', text)
# Clean and filter
cleaned_paragraphs = list()
for para in paragraphs:
para = para.strip()
# There should be at least 5 words
if para and (len(para.split()) >= 5):
cleaned_paragraphs.append(para)
return cleaned_paragraphs if cleaned_paragraphs else [text]
def create_chunks(self, text: str, chunk_size: int = 512, overlap: int = 50, unit: str = 'words') -> List[str]:
"""
Split long text into overlapping chunks
Arguments:
----------
text { str } : Input text
chunk_size { int } : Size of each chunk
overlap { int } : Number of units to overlap between chunks
unit { str } : 'words', 'sentences', or 'chars'
Returns:
--------
{ list } : List of text chunks
"""
if (unit == 'words'):
units = self.tokenize_words(text)
elif (unit == 'sentences'):
units = self.split_sentences(text)
elif (unit == 'chars'):
units = list(text)
else:
raise ValueError(f"Unknown unit: {unit}")
if (len(units) <= chunk_size):
return [text]
chunks = list()
start = 0
while (start < len(units)):
end = start + chunk_size
chunk_units = units[start:end]
if (unit == 'chars'):
chunk_text = ''.join(chunk_units)
else:
chunk_text = ' '.join(chunk_units)
chunks.append(chunk_text)
start = end - overlap
return chunks
def _initial_clean(self, text: str) -> str:
"""
Remove null bytes and control characters
"""
# Remove null bytes
text = text.replace('\x00', '')
# Remove other control characters except newlines and tabs
text = ''.join(char for char in text if unicodedata.category(char)[0] != 'C' or char in '\n\t\r')
return text
def _fix_encoding_issues(self, text: str) -> str:
"""
Fix common encoding issues
"""
replacements = {'’' : "'", # Smart apostrophe
'“' : '"', # Smart quote left
'â€' : '"', # Smart quote right
'â€"' : '—', # Em dash
'â€"' : '–', # En dash
'…' : '...', # Ellipsis
'é' : 'é', # Common UTF-8 issue
'è' : 'è',
'Ã ' : 'à',
'€' : '€', # Euro sign
}
for wrong, right in replacements.items():
text = text.replace(wrong, right)
return text
def _normalize_unicode(self, text: str) -> str:
"""
Normalize Unicode to consistent form
"""
# NFKC normalization (compatibility decomposition, followed by canonical composition)
text = unicodedata.normalize('NFKC', text)
# Replace smart quotes and apostrophes
text = text.replace('"', '"').replace('"', '"')
text = text.replace(''', "'").replace(''', "'")
text = text.replace('—', '-').replace('–', '-')
return text
def _remove_urls(self, text: str) -> str:
"""
Remove URLs from text
"""
# Remove http/https URLs
text = re.sub(r'https?://\S+', '', text)
# Remove www URLs
text = re.sub(r'www\.\S+', '', text)
return text
def _remove_emails(self, text: str) -> str:
"""
Remove email addresses
"""
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '', text)
return text
def _clean_whitespace(self, text: str) -> str:
"""
Normalize whitespace
"""
if self.preserve_formatting:
# Just normalize multiple spaces
text = self.MULTIPLE_SPACES.sub(' ', text)
text = self.MULTIPLE_NEWLINES.sub('\n\n', text)
else:
# Aggressive whitespace normalization
text = self.MULTIPLE_NEWLINES.sub('\n\n', text)
text = self.MULTIPLE_SPACES.sub(' ', text)
text = text.strip()
return text
def _has_special_characters(self, text: str) -> bool:
"""
Check if text contains special characters
"""
special_chars = set('!@#$%^&*()[]{}|\\:;"<>?,./~`')
return any(char in special_chars for char in text)
def _create_invalid_result(self, text: str, errors: List[str]) -> ProcessedText:
"""
Create a ProcessedText object for invalid input
"""
return ProcessedText(original_text = text,
cleaned_text = "",
sentences = [],
words = [],
paragraphs = [],
char_count = 0,
word_count = 0,
sentence_count = 0,
paragraph_count = 0,
avg_sentence_length = 0.0,
avg_word_length = 0.0,
is_valid = False,
validation_errors = errors,
metadata = {},
)
# Convenience Functions
def quick_process(text: str, **kwargs) -> ProcessedText:
"""
Quick processing with default settings
Arguments:
----------
text : Input text
**kwargs : Override settings
Returns:
--------
ProcessedText object
"""
processor = TextProcessor(**kwargs)
return processor.process(text)
def extract_sentences(text: str) -> List[str]:
"""
Quick sentence extraction
"""
processor = TextProcessor()
return processor.split_sentences(text)
def extract_words(text: str) -> List[str]:
"""
Quick word extraction
"""
processor = TextProcessor()
return processor.tokenize_words(text)
# Export
__all__ = ['TextProcessor',
'ProcessedText',
'quick_process',
'extract_sentences',
'extract_words',
]
# ==================== Testing ====================
if __name__ == "__main__":
# Test cases
test_texts = [
# Normal text
"This is a test. Dr. Smith works at the U.S. Department of Education. "
"He published a paper on AI detection in 2024.",
# Text with encoding issues
"This text’s got some “weird†characters that need fixing.",
# Text with URLs and emails
"Check out https://example.com or email me at test@example.com for more info.",
# Short text (should fail validation)
"Too short.",
# Text with numbers and special characters
"The price is $19.99 for version 2.0. Contact us at (555) 123-4567!",
]
processor = TextProcessor(min_text_length=20)
for i, text in enumerate(test_texts, 1):
print(f"\n{'='*70}")
print(f"TEST CASE {i}")
print(f"{'='*70}")
print(f"Input: {text[:100]}...")
result = processor.process(text)
print(f"\nValid: {result.is_valid}")
if not result.is_valid:
print(f"Errors: {result.validation_errors}")
print(f"Word count: {result.word_count}")
print(f"Sentence count: {result.sentence_count}")
print(f"Avg sentence length: {result.avg_sentence_length:.2f}")
print(f"\nSentences:")
for j, sent in enumerate(result.sentences[:3], 1):
print(f" {j}. {sent}")