Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,625 Bytes
2cad7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
import os
import shutil
import subprocess
import sys
import tempfile
import time
import unittest
from typing import List, Optional
# Mock LLM calls are automatically applied via environment variables
# No need to import - the mock patches are applied when USE_MOCK_LLM=1 is set
def run_cli_topics(
script_path: str,
task: str,
output_dir: str,
input_file: Optional[str] = None,
text_column: Optional[str] = None,
previous_output_files: Optional[List[str]] = None,
timeout: int = 600, # 10-minute timeout
# General Arguments
username: Optional[str] = None,
save_to_user_folders: Optional[bool] = None,
excel_sheets: Optional[List[str]] = None,
group_by: Optional[str] = None,
# Model Configuration
model_choice: Optional[str] = None,
temperature: Optional[float] = None,
batch_size: Optional[int] = None,
max_tokens: Optional[int] = None,
api_url: Optional[str] = None,
inference_server_model: Optional[str] = None,
# Topic Extraction Arguments
context: Optional[str] = None,
candidate_topics: Optional[str] = None,
force_zero_shot: Optional[str] = None,
force_single_topic: Optional[str] = None,
produce_structured_summary: Optional[str] = None,
sentiment: Optional[str] = None,
additional_summary_instructions: Optional[str] = None,
# Validation Arguments
additional_validation_issues: Optional[str] = None,
show_previous_table: Optional[str] = None,
output_debug_files: Optional[str] = None,
max_time_for_loop: Optional[int] = None,
# Deduplication Arguments
method: Optional[str] = None,
similarity_threshold: Optional[int] = None,
merge_sentiment: Optional[str] = None,
merge_general_topics: Optional[str] = None,
# Summarisation Arguments
summary_format: Optional[str] = None,
sample_reference_table: Optional[str] = None,
no_of_sampled_summaries: Optional[int] = None,
random_seed: Optional[int] = None,
# Output Format Arguments
create_xlsx_output: Optional[bool] = None,
# Logging Arguments
save_logs_to_csv: Optional[bool] = None,
save_logs_to_dynamodb: Optional[bool] = None,
cost_code: Optional[str] = None,
) -> bool:
"""
Executes the cli_topics.py script with specified arguments using a subprocess.
Args:
script_path (str): The path to the cli_topics.py script.
task (str): The main task to perform ('extract', 'validate', 'deduplicate', 'summarise', 'overall_summary', or 'all_in_one').
output_dir (str): The path to the directory for output files.
input_file (str, optional): Path to the input file to process.
text_column (str, optional): Name of the text column to process.
previous_output_files (List[str], optional): Path(s) to previous output files.
timeout (int): Timeout in seconds for the subprocess.
All other arguments match the CLI arguments from cli_topics.py.
Returns:
bool: True if the script executed successfully, False otherwise.
"""
# 1. Get absolute paths and perform pre-checks
script_abs_path = os.path.abspath(script_path)
output_abs_dir = os.path.abspath(output_dir)
# Handle input file based on task
if task in ["extract", "validate", "all_in_one"] and input_file is None:
raise ValueError(f"Input file is required for '{task}' task")
if input_file:
input_abs_path = os.path.abspath(input_file)
if not os.path.isfile(input_abs_path):
raise FileNotFoundError(f"Input file not found: {input_abs_path}")
if not os.path.isfile(script_abs_path):
raise FileNotFoundError(f"Script not found: {script_abs_path}")
if not os.path.isdir(output_abs_dir):
# Create the output directory if it doesn't exist
print(f"Output directory not found. Creating: {output_abs_dir}")
os.makedirs(output_abs_dir)
script_folder = os.path.dirname(script_abs_path)
# 2. Dynamically build the command list
command = [
"python",
script_abs_path,
"--output_dir",
output_abs_dir,
"--task",
task,
]
# Add input_file only if it's not None
if input_file:
command.extend(["--input_file", input_abs_path])
# Add general arguments
if text_column:
command.extend(["--text_column", text_column])
if previous_output_files:
command.extend(["--previous_output_files"] + previous_output_files)
if username:
command.extend(["--username", username])
if save_to_user_folders is not None:
command.extend(["--save_to_user_folders", str(save_to_user_folders)])
if excel_sheets:
command.append("--excel_sheets")
command.extend(excel_sheets)
if group_by:
command.extend(["--group_by", group_by])
# Add model configuration arguments
if model_choice:
command.extend(["--model_choice", model_choice])
if temperature is not None:
command.extend(["--temperature", str(temperature)])
if batch_size is not None:
command.extend(["--batch_size", str(batch_size)])
if max_tokens is not None:
command.extend(["--max_tokens", str(max_tokens)])
if api_url:
command.extend(["--api_url", api_url])
if inference_server_model:
command.extend(["--inference_server_model", inference_server_model])
# Add topic extraction arguments
if context:
command.extend(["--context", context])
if candidate_topics:
command.extend(["--candidate_topics", candidate_topics])
if force_zero_shot:
command.extend(["--force_zero_shot", force_zero_shot])
if force_single_topic:
command.extend(["--force_single_topic", force_single_topic])
if produce_structured_summary:
command.extend(["--produce_structured_summary", produce_structured_summary])
if sentiment:
command.extend(["--sentiment", sentiment])
if additional_summary_instructions:
command.extend(
["--additional_summary_instructions", additional_summary_instructions]
)
# Add validation arguments
if additional_validation_issues:
command.extend(["--additional_validation_issues", additional_validation_issues])
if show_previous_table:
command.extend(["--show_previous_table", show_previous_table])
if output_debug_files:
command.extend(["--output_debug_files", output_debug_files])
if max_time_for_loop is not None:
command.extend(["--max_time_for_loop", str(max_time_for_loop)])
# Add deduplication arguments
if method:
command.extend(["--method", method])
if similarity_threshold is not None:
command.extend(["--similarity_threshold", str(similarity_threshold)])
if merge_sentiment:
command.extend(["--merge_sentiment", merge_sentiment])
if merge_general_topics:
command.extend(["--merge_general_topics", merge_general_topics])
# Add summarisation arguments
if summary_format:
command.extend(["--summary_format", summary_format])
if sample_reference_table:
command.extend(["--sample_reference_table", sample_reference_table])
if no_of_sampled_summaries is not None:
command.extend(["--no_of_sampled_summaries", str(no_of_sampled_summaries)])
if random_seed is not None:
command.extend(["--random_seed", str(random_seed)])
# Add output format arguments
if create_xlsx_output is False:
command.append("--no_xlsx_output")
# Add logging arguments
if save_logs_to_csv is not None:
command.extend(["--save_logs_to_csv", str(save_logs_to_csv)])
if save_logs_to_dynamodb is not None:
command.extend(["--save_logs_to_dynamodb", str(save_logs_to_dynamodb)])
if cost_code:
command.extend(["--cost_code", cost_code])
# Filter out None values before joining
command_str = " ".join(str(arg) for arg in command if arg is not None)
print(f"Executing command: {command_str}")
# 3. Execute the command using subprocess
try:
# Use unbuffered output to avoid hanging
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
# Ensure inference server is enabled for testing
env["RUN_INFERENCE_SERVER"] = "1"
# Enable mock mode
env["USE_MOCK_LLM"] = "1"
env["TEST_MODE"] = "1"
result = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Combine stderr with stdout to avoid deadlocks
text=True,
cwd=script_folder, # Important for relative paths within the script
env=env,
bufsize=0, # Unbuffered
)
# Read output in real-time to avoid deadlocks
start_time = time.time()
# For Windows, we need a different approach
if sys.platform == "win32":
# On Windows, use communicate with timeout
try:
stdout, stderr = result.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
result.kill()
stdout, stderr = result.communicate()
raise subprocess.TimeoutExpired(result.args, timeout)
else:
# On Unix, we can use select for real-time reading
import select
stdout_lines = []
while result.poll() is None:
ready, _, _ = select.select([result.stdout], [], [], 0.1)
if ready:
line = result.stdout.readline()
if line:
print(line.rstrip(), flush=True)
stdout_lines.append(line)
# Check timeout
if time.time() - start_time > timeout:
result.kill()
raise subprocess.TimeoutExpired(result.args, timeout)
# Read remaining output
remaining = result.stdout.read()
if remaining:
print(remaining, end="", flush=True)
stdout_lines.append(remaining)
stdout = "".join(stdout_lines)
stderr = "" # Combined with stdout
print("--- SCRIPT STDOUT ---")
if stdout:
print(stdout)
print("--- SCRIPT STDERR ---")
if stderr:
print(stderr)
print("---------------------")
# Analyze the output for errors and success indicators
analysis = analyze_test_output(stdout, stderr)
if analysis["has_errors"]:
print("β Errors detected in output:")
for i, error_type in enumerate(analysis["error_types"]):
print(f" {i+1}. {error_type}")
if analysis["error_messages"]:
print(" Error messages:")
for msg in analysis["error_messages"][
:3
]: # Show first 3 error messages
print(f" - {msg}")
return False
elif result.returncode == 0:
success_msg = "β
Script executed successfully."
if analysis["success_indicators"]:
success_msg += f" (Success indicators: {', '.join(analysis['success_indicators'][:3])})"
print(success_msg)
return True
else:
print(f"β Command failed with return code {result.returncode}")
return False
except subprocess.TimeoutExpired:
result.kill()
print(f"β Subprocess timed out after {timeout} seconds.")
return False
except Exception as e:
print(f"β An unexpected error occurred: {e}")
return False
def analyze_test_output(stdout: str, stderr: str) -> dict:
"""
Analyze test output to provide detailed error information.
Args:
stdout (str): Standard output from the test
stderr (str): Standard error from the test
Returns:
dict: Analysis results with error details
"""
combined_output = (stdout or "") + (stderr or "")
analysis = {
"has_errors": False,
"error_types": [],
"error_messages": [],
"success_indicators": [],
"warning_indicators": [],
}
# Error patterns
error_patterns = {
"An error occurred": "General error message",
"Error:": "Error prefix",
"Exception:": "Exception occurred",
"Traceback": "Python traceback",
"Failed to": "Operation failure",
"Cannot": "Operation not possible",
"Unable to": "Operation not possible",
"KeyError:": "Missing key/dictionary error",
"AttributeError:": "Missing attribute error",
"TypeError:": "Type mismatch error",
"ValueError:": "Invalid value error",
"FileNotFoundError:": "File not found",
"ImportError:": "Import failure",
"ModuleNotFoundError:": "Module not found",
}
# Success indicators
success_patterns = [
"Successfully",
"Completed",
"Finished",
"Processed",
"Complete",
"Output files saved",
]
# Warning indicators
warning_patterns = ["Warning:", "WARNING:", "Deprecated", "DeprecationWarning"]
# Check for errors
for pattern, description in error_patterns.items():
if pattern.lower() in combined_output.lower():
analysis["has_errors"] = True
analysis["error_types"].append(description)
# Extract the actual error message
lines = combined_output.split("\n")
for line in lines:
if pattern.lower() in line.lower():
analysis["error_messages"].append(line.strip())
# Check for success indicators
for pattern in success_patterns:
if pattern.lower() in combined_output.lower():
analysis["success_indicators"].append(pattern)
# Check for warnings
for pattern in warning_patterns:
if pattern.lower() in combined_output.lower():
analysis["warning_indicators"].append(pattern)
return analysis
def run_app_direct_mode(
app_path: str,
task: str,
output_dir: str,
input_file: Optional[str] = None,
text_column: Optional[str] = None,
previous_output_files: Optional[List[str]] = None,
timeout: int = 600,
# General Arguments
username: Optional[str] = None,
save_to_user_folders: Optional[bool] = None,
excel_sheets: Optional[List[str]] = None,
group_by: Optional[str] = None,
# Model Configuration
model_choice: Optional[str] = None,
temperature: Optional[float] = None,
batch_size: Optional[int] = None,
max_tokens: Optional[int] = None,
api_url: Optional[str] = None,
inference_server_model: Optional[str] = None,
# Topic Extraction Arguments
context: Optional[str] = None,
candidate_topics: Optional[str] = None,
force_zero_shot: Optional[str] = None,
force_single_topic: Optional[str] = None,
produce_structured_summary: Optional[str] = None,
sentiment: Optional[str] = None,
additional_summary_instructions: Optional[str] = None,
# Validation Arguments
additional_validation_issues: Optional[str] = None,
show_previous_table: Optional[str] = None,
output_debug_files: Optional[str] = None,
max_time_for_loop: Optional[int] = None,
# Deduplication Arguments
method: Optional[str] = None,
similarity_threshold: Optional[int] = None,
merge_sentiment: Optional[str] = None,
merge_general_topics: Optional[str] = None,
# Summarisation Arguments
summary_format: Optional[str] = None,
sample_reference_table: Optional[str] = None,
no_of_sampled_summaries: Optional[int] = None,
random_seed: Optional[int] = None,
# Output Format Arguments
create_xlsx_output: Optional[bool] = None,
# Logging Arguments
save_logs_to_csv: Optional[bool] = None,
save_logs_to_dynamodb: Optional[bool] = None,
cost_code: Optional[str] = None,
) -> bool:
"""
Executes the app.py script in direct mode with specified environment variables.
Args:
app_path (str): The path to the app.py script.
task (str): The main task to perform ('extract', 'validate', 'deduplicate', 'summarise', 'overall_summary', or 'all_in_one').
output_dir (str): The path to the directory for output files.
input_file (str, optional): Path to the input file to process.
text_column (str, optional): Name of the text column to process.
previous_output_files (List[str], optional): Path(s) to previous output files.
timeout (int): Timeout in seconds for the subprocess.
All other arguments match the CLI arguments from cli_topics.py, but are set as environment variables.
Returns:
bool: True if the script executed successfully, False otherwise.
"""
# 1. Get absolute paths and perform pre-checks
app_abs_path = os.path.abspath(app_path)
output_abs_dir = os.path.abspath(output_dir)
# Handle input file based on task
if task in ["extract", "validate", "all_in_one"] and input_file is None:
raise ValueError(f"Input file is required for '{task}' task")
if input_file:
input_abs_path = os.path.abspath(input_file)
if not os.path.isfile(input_abs_path):
raise FileNotFoundError(f"Input file not found: {input_abs_path}")
if not os.path.isfile(app_abs_path):
raise FileNotFoundError(f"App script not found: {app_abs_path}")
if not os.path.isdir(output_abs_dir):
# Create the output directory if it doesn't exist
print(f"Output directory not found. Creating: {output_abs_dir}")
os.makedirs(output_abs_dir)
script_folder = os.path.dirname(app_abs_path)
# 2. Build environment variables for direct mode
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
env["RUN_INFERENCE_SERVER"] = "1"
env["USE_MOCK_LLM"] = "1"
env["TEST_MODE"] = "1"
# Enable direct mode
env["RUN_DIRECT_MODE"] = "1"
# Task selection
env["DIRECT_MODE_TASK"] = task
# General arguments
if input_file:
# Use pipe separator to handle file paths with spaces
env["DIRECT_MODE_INPUT_FILE"] = input_abs_path
env["DIRECT_MODE_OUTPUT_DIR"] = output_abs_dir
if text_column:
env["DIRECT_MODE_TEXT_COLUMN"] = text_column
if previous_output_files:
# Use pipe separator to handle file paths with spaces
env["DIRECT_MODE_PREVIOUS_OUTPUT_FILES"] = "|".join(previous_output_files)
if username:
env["DIRECT_MODE_USERNAME"] = username
if save_to_user_folders is not None:
env["SESSION_OUTPUT_FOLDER"] = str(save_to_user_folders)
if excel_sheets:
env["DIRECT_MODE_EXCEL_SHEETS"] = ",".join(excel_sheets)
if group_by:
env["DIRECT_MODE_GROUP_BY"] = group_by
# Model configuration
if model_choice:
env["DIRECT_MODE_MODEL_CHOICE"] = model_choice
if temperature is not None:
env["DIRECT_MODE_TEMPERATURE"] = str(temperature)
if batch_size is not None:
env["DIRECT_MODE_BATCH_SIZE"] = str(batch_size)
if max_tokens is not None:
env["DIRECT_MODE_MAX_TOKENS"] = str(max_tokens)
if api_url:
env["API_URL"] = api_url
if inference_server_model:
env["DIRECT_MODE_INFERENCE_SERVER_MODEL"] = inference_server_model
# Topic extraction arguments
if context:
env["DIRECT_MODE_CONTEXT"] = context
if candidate_topics:
env["DIRECT_MODE_CANDIDATE_TOPICS"] = candidate_topics
if force_zero_shot:
env["DIRECT_MODE_FORCE_ZERO_SHOT"] = force_zero_shot
if force_single_topic:
env["DIRECT_MODE_FORCE_SINGLE_TOPIC"] = force_single_topic
if produce_structured_summary:
env["DIRECT_MODE_PRODUCE_STRUCTURED_SUMMARY"] = produce_structured_summary
if sentiment:
env["DIRECT_MODE_SENTIMENT"] = sentiment
if additional_summary_instructions:
env["DIRECT_MODE_ADDITIONAL_SUMMARY_INSTRUCTIONS"] = (
additional_summary_instructions
)
# Validation arguments
if additional_validation_issues:
env["DIRECT_MODE_ADDITIONAL_VALIDATION_ISSUES"] = additional_validation_issues
if show_previous_table:
env["DIRECT_MODE_SHOW_PREVIOUS_TABLE"] = show_previous_table
if output_debug_files:
env["OUTPUT_DEBUG_FILES"] = output_debug_files
if max_time_for_loop is not None:
env["DIRECT_MODE_MAX_TIME_FOR_LOOP"] = str(max_time_for_loop)
# Deduplication arguments
if method:
env["DIRECT_MODE_DEDUP_METHOD"] = method
if similarity_threshold is not None:
env["DIRECT_MODE_SIMILARITY_THRESHOLD"] = str(similarity_threshold)
if merge_sentiment:
env["DIRECT_MODE_MERGE_SENTIMENT"] = merge_sentiment
if merge_general_topics:
env["DIRECT_MODE_MERGE_GENERAL_TOPICS"] = merge_general_topics
# Summarisation arguments
if summary_format:
env["DIRECT_MODE_SUMMARY_FORMAT"] = summary_format
if sample_reference_table:
env["DIRECT_MODE_SAMPLE_REFERENCE_TABLE"] = sample_reference_table
if no_of_sampled_summaries is not None:
env["DIRECT_MODE_NO_OF_SAMPLED_SUMMARIES"] = str(no_of_sampled_summaries)
if random_seed is not None:
env["DIRECT_MODE_RANDOM_SEED"] = str(random_seed)
# Output format arguments
if create_xlsx_output is not None:
env["DIRECT_MODE_CREATE_XLSX_OUTPUT"] = str(create_xlsx_output)
# Logging arguments
if save_logs_to_csv is not None:
env["SAVE_LOGS_TO_CSV"] = str(save_logs_to_csv)
if save_logs_to_dynamodb is not None:
env["SAVE_LOGS_TO_DYNAMODB"] = str(save_logs_to_dynamodb)
if cost_code:
env["DEFAULT_COST_CODE"] = cost_code
# 3. Build command (just run app.py, no arguments needed in direct mode)
command = ["python", app_abs_path]
command_str = " ".join(str(arg) for arg in command)
print(f"Executing direct mode command: {command_str}")
print(f"Direct mode task: {task}")
if input_file:
print(f"Input file: {input_abs_path}")
if text_column:
print(f"Text column: {text_column}")
# 4. Execute the command using subprocess
try:
result = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Combine stderr with stdout to avoid deadlocks
text=True,
cwd=script_folder, # Important for relative paths within the script
env=env,
bufsize=0, # Unbuffered
)
# Read output in real-time to avoid deadlocks
start_time = time.time()
# For Windows, we need a different approach
if sys.platform == "win32":
# On Windows, use communicate with timeout
try:
stdout, stderr = result.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
result.kill()
stdout, stderr = result.communicate()
raise subprocess.TimeoutExpired(result.args, timeout)
else:
# On Unix, we can use select for real-time reading
import select
stdout_lines = []
while result.poll() is None:
ready, _, _ = select.select([result.stdout], [], [], 0.1)
if ready:
line = result.stdout.readline()
if line:
print(line.rstrip(), flush=True)
stdout_lines.append(line)
# Check timeout
if time.time() - start_time > timeout:
result.kill()
raise subprocess.TimeoutExpired(result.args, timeout)
# Read remaining output
remaining = result.stdout.read()
if remaining:
print(remaining, end="", flush=True)
stdout_lines.append(remaining)
stdout = "".join(stdout_lines)
stderr = "" # Combined with stdout
print("--- SCRIPT STDOUT ---")
if stdout:
print(stdout)
print("--- SCRIPT STDERR ---")
if stderr:
print(stderr)
print("---------------------")
# Analyze the output for errors and success indicators
analysis = analyze_test_output(stdout, stderr)
if analysis["has_errors"]:
print("β Errors detected in output:")
for i, error_type in enumerate(analysis["error_types"]):
print(f" {i+1}. {error_type}")
if analysis["error_messages"]:
print(" Error messages:")
for msg in analysis["error_messages"][
:3
]: # Show first 3 error messages
print(f" - {msg}")
return False
elif result.returncode == 0:
success_msg = "β
Script executed successfully."
if analysis["success_indicators"]:
success_msg += f" (Success indicators: {', '.join(analysis['success_indicators'][:3])})"
print(success_msg)
return True
else:
print(f"β Command failed with return code {result.returncode}")
return False
except subprocess.TimeoutExpired:
result.kill()
print(f"β Subprocess timed out after {timeout} seconds.")
return False
except Exception as e:
print(f"β An unexpected error occurred: {e}")
return False
class TestCLITopicsExamples(unittest.TestCase):
"""Test suite for CLI topic extraction examples from the epilog."""
@classmethod
def setUpClass(cls):
"""Set up test environment before running tests."""
cls.script_path = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "cli_topics.py"
)
cls.example_data_dir = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "example_data"
)
cls.temp_output_dir = tempfile.mkdtemp(prefix="test_output_")
# Verify script exists
if not os.path.isfile(cls.script_path):
raise FileNotFoundError(f"CLI script not found: {cls.script_path}")
print(f"Test setup complete. Script: {cls.script_path}")
print(f"Example data directory: {cls.example_data_dir}")
print(f"Temp output directory: {cls.temp_output_dir}")
print("Using function mocking instead of HTTP server")
# Debug: Check if example data directory exists and list contents
if os.path.exists(cls.example_data_dir):
print("Example data directory exists. Contents:")
for item in os.listdir(cls.example_data_dir):
item_path = os.path.join(cls.example_data_dir, item)
if os.path.isfile(item_path):
print(f" File: {item} ({os.path.getsize(item_path)} bytes)")
else:
print(f" Directory: {item}")
else:
print(f"Example data directory does not exist: {cls.example_data_dir}")
@classmethod
def tearDownClass(cls):
"""Clean up test environment after running tests."""
if os.path.exists(cls.temp_output_dir):
shutil.rmtree(cls.temp_output_dir)
print(f"Cleaned up temp directory: {cls.temp_output_dir}")
def test_extract_topics_default_settings(self):
"""Test: Extract topics from a CSV file with default settings"""
print("\n=== Testing topic extraction with default settings ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with default settings should succeed")
print("β
Topic extraction with default settings passed")
def test_extract_topics_custom_model_and_context(self):
"""Test: Extract topics with custom model and context"""
print("\n=== Testing topic extraction with custom model and context ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
context="Social Care case notes for young people",
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(
result, "Topic extraction with custom model and context should succeed"
)
print("β
Topic extraction with custom model and context passed")
def test_extract_topics_with_grouping(self):
"""Test: Extract topics with grouping"""
print("\n=== Testing topic extraction with grouping ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
group_by="Client",
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with grouping should succeed")
print("β
Topic extraction with grouping passed")
def test_extract_topics_with_candidate_topics(self):
"""Test: Extract topics with candidate topics (zero-shot)"""
print("\n=== Testing topic extraction with candidate topics ===")
input_file = os.path.join(
self.example_data_dir, "dummy_consultation_response.csv"
)
candidate_topics_file = os.path.join(
self.example_data_dir, "dummy_consultation_response_themes.csv"
)
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
if not os.path.isfile(candidate_topics_file):
self.skipTest(f"Candidate topics file not found: {candidate_topics_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Response text",
output_dir=self.temp_output_dir,
candidate_topics=candidate_topics_file,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with candidate topics should succeed")
print("β
Topic extraction with candidate topics passed")
def test_deduplicate_topics_fuzzy(self):
"""Test: Deduplicate topics using fuzzy matching"""
print("\n=== Testing topic deduplication with fuzzy matching ===")
# First, we need to create some output files by running extraction
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
# Run extraction first to create output files
extract_result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
if not extract_result:
self.skipTest("Extraction failed, cannot test deduplication")
# Find the output files (they should be in temp_output_dir)
# The file names follow a pattern like: {input_file_name}_col_{text_column}_reference_table.csv
import glob
reference_files = glob.glob(
os.path.join(self.temp_output_dir, "*reference_table.csv")
)
unique_files = glob.glob(
os.path.join(self.temp_output_dir, "*unique_topics.csv")
)
if not reference_files or not unique_files:
self.skipTest("Could not find output files from extraction")
result = run_cli_topics(
script_path=self.script_path,
task="deduplicate",
previous_output_files=[reference_files[0], unique_files[0]],
output_dir=self.temp_output_dir,
method="fuzzy",
similarity_threshold=90,
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(
result, "Topic deduplication with fuzzy matching should succeed"
)
print("β
Topic deduplication with fuzzy matching passed")
def test_deduplicate_topics_llm(self):
"""Test: Deduplicate topics using LLM"""
print("\n=== Testing topic deduplication with LLM ===")
# First, we need to create some output files by running extraction
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
# Run extraction first to create output files
extract_result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
if not extract_result:
self.skipTest("Extraction failed, cannot test deduplication")
# Find the output files
import glob
reference_files = glob.glob(
os.path.join(self.temp_output_dir, "*reference_table.csv")
)
unique_files = glob.glob(
os.path.join(self.temp_output_dir, "*unique_topics.csv")
)
if not reference_files or not unique_files:
self.skipTest("Could not find output files from extraction")
result = run_cli_topics(
script_path=self.script_path,
task="deduplicate",
previous_output_files=[reference_files[0], unique_files[0]],
output_dir=self.temp_output_dir,
method="llm",
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic deduplication with LLM should succeed")
print("β
Topic deduplication with LLM passed")
def test_all_in_one_pipeline(self):
"""Test: Run complete pipeline (extract, deduplicate, summarise)"""
print("\n=== Testing all-in-one pipeline ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="all_in_one",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
timeout=120, # Shorter timeout for debugging
)
self.assertTrue(result, "All-in-one pipeline should succeed")
print("β
All-in-one pipeline passed")
def test_direct_mode_extract(self):
"""Test: Run app in direct mode for topic extraction"""
print("\n=== Testing direct mode - topic extraction ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
app_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "app.py")
if not os.path.isfile(app_path):
self.skipTest(f"App script not found: {app_path}")
result = run_app_direct_mode(
app_path=app_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080",
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Direct mode topic extraction should succeed")
print("β
Direct mode topic extraction passed")
def run_all_tests():
"""Run all test examples and report results."""
print("=" * 80)
print("LLM TOPIC MODELLER TEST SUITE")
print("=" * 80)
print("This test suite includes:")
print("- CLI examples from the epilog")
print("- GUI application tests")
print("- Tests use a mock inference-server to avoid API costs")
print("Tests will be skipped if required example files are not found.")
print("=" * 80)
# Create test suite
loader = unittest.TestLoader()
suite = unittest.TestSuite()
# Add CLI tests
cli_suite = loader.loadTestsFromTestCase(TestCLITopicsExamples)
suite.addTests(cli_suite)
# Add GUI tests
try:
from test.test_gui_only import TestGUIAppOnly
gui_suite = loader.loadTestsFromTestCase(TestGUIAppOnly)
suite.addTests(gui_suite)
print("GUI tests included in test suite.")
except ImportError as e:
print(f"Warning: Could not import GUI tests: {e}")
print("Skipping GUI tests.")
# Run tests with detailed output
runner = unittest.TextTestRunner(verbosity=2, stream=None)
result = runner.run(suite)
# Print summary
print("\n" + "=" * 80)
print("TEST SUMMARY")
print("=" * 80)
print(f"Tests run: {result.testsRun}")
print(f"Failures: {len(result.failures)}")
print(f"Errors: {len(result.errors)}")
print(f"Skipped: {len(result.skipped) if hasattr(result, 'skipped') else 0}")
if result.failures:
print("\nFAILURES:")
for test, traceback in result.failures:
print(f"- {test}: {traceback}")
if result.errors:
print("\nERRORS:")
for test, traceback in result.errors:
print(f"- {test}: {traceback}")
success = len(result.failures) == 0 and len(result.errors) == 0
print(f"\nOverall result: {'β
PASSED' if success else 'β FAILED'}")
print("=" * 80)
return success
if __name__ == "__main__":
# Run the test suite
success = run_all_tests()
exit(0 if success else 1)
|