Spaces:
Runtime error
Runtime error
Rename modal.py to model.py
Browse files
modal.py
DELETED
|
@@ -1,300 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, WhisperProcessor, WhisperForConditionalGeneration, PreTrainedModel,BitsAndBytesConfig
|
| 6 |
-
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model, TaskType
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
import json
|
| 9 |
-
import librosa
|
| 10 |
-
from dataclasses import dataclass
|
| 11 |
-
from typing import Any, Dict, List, Union
|
| 12 |
-
import gc
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
|
| 15 |
-
# # Define multimodal projector class
|
| 16 |
-
# class ProjectionBlock(nn.Module):
|
| 17 |
-
# def __init__(self, input_dim, output_dim):
|
| 18 |
-
# super().__init__()
|
| 19 |
-
# self.pre_norm = nn.LayerNorm(input_dim)
|
| 20 |
-
# self.proj = nn.Sequential(nn.Linear(input_dim, output_dim), nn.GELU(), nn.Linear(output_dim, output_dim))
|
| 21 |
-
|
| 22 |
-
# def forward(self, x):
|
| 23 |
-
# return self.proj(self.pre_norm(x))
|
| 24 |
-
|
| 25 |
-
import torch
|
| 26 |
-
import torch.nn as nn
|
| 27 |
-
|
| 28 |
-
class CrossAttentionBlock(nn.Module):
|
| 29 |
-
def __init__(self, embed_dim, num_heads=8, dropout=0.1):
|
| 30 |
-
super().__init__()
|
| 31 |
-
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
| 32 |
-
self.norm1 = nn.LayerNorm(embed_dim)
|
| 33 |
-
self.norm2 = nn.LayerNorm(embed_dim)
|
| 34 |
-
self.ffn = nn.Sequential(
|
| 35 |
-
nn.Linear(embed_dim, embed_dim * 4),
|
| 36 |
-
nn.GELU(),
|
| 37 |
-
nn.Linear(embed_dim * 4, embed_dim),
|
| 38 |
-
nn.Dropout(dropout)
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
def forward(self, x, context):
|
| 42 |
-
# Self attention
|
| 43 |
-
attended, _ = self.attention(
|
| 44 |
-
query=self.norm1(x),
|
| 45 |
-
key=self.norm1(context),
|
| 46 |
-
value=self.norm1(context)
|
| 47 |
-
)
|
| 48 |
-
x = x + attended
|
| 49 |
-
|
| 50 |
-
# FFN
|
| 51 |
-
x = x + self.ffn(self.norm2(x))
|
| 52 |
-
return x
|
| 53 |
-
|
| 54 |
-
## Updated on 23rd November
|
| 55 |
-
class ProjectionBlock(nn.Module):
|
| 56 |
-
def __init__(self, input_dim, output_dim):
|
| 57 |
-
super().__init__()
|
| 58 |
-
self.pre_norm = nn.LayerNorm(input_dim)
|
| 59 |
-
self.proj = nn.Sequential(
|
| 60 |
-
nn.Linear(input_dim, output_dim * 2), # Increase intermediate dimension
|
| 61 |
-
nn.GELU(),
|
| 62 |
-
nn.Linear(output_dim * 2, output_dim) # Project to final dimension
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
def forward(self, x):
|
| 66 |
-
# Add shape validation
|
| 67 |
-
if len(x.shape) == 2: # If input is [batch_size, features]
|
| 68 |
-
return self.proj(self.pre_norm(x))
|
| 69 |
-
elif len(x.shape) == 3: # If input is [batch_size, seq_len, features]
|
| 70 |
-
return self.proj(self.pre_norm(x.mean(dim=1))) # Pool sequence dimension
|
| 71 |
-
else:
|
| 72 |
-
raise ValueError(f"Unexpected input shape: {x.shape}")
|
| 73 |
-
|
| 74 |
-
##Updated on 23rd November
|
| 75 |
-
# class EnhancedMultimodalProjector(nn.Module):
|
| 76 |
-
# def __init__(self, image_input_dim, audio_input_dim, output_dim, num_heads=8):
|
| 77 |
-
# super().__init__()
|
| 78 |
-
|
| 79 |
-
# # Adjust projectors to match Phi-3's hidden size (1024)
|
| 80 |
-
# self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
| 81 |
-
# self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
| 82 |
-
|
| 83 |
-
# # Cross-attention blocks
|
| 84 |
-
# self.image_audio_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
| 85 |
-
# self.audio_image_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
| 86 |
-
|
| 87 |
-
# # Final fusion layer
|
| 88 |
-
# self.fusion_layer = nn.Sequential(
|
| 89 |
-
# nn.LayerNorm(output_dim * 2),
|
| 90 |
-
# nn.Linear(output_dim * 2, output_dim),
|
| 91 |
-
# nn.GELU(),
|
| 92 |
-
# nn.Linear(output_dim, output_dim)
|
| 93 |
-
# )
|
| 94 |
-
class EnhancedMultimodalProjector(nn.Module):
|
| 95 |
-
def __init__(self, image_input_dim, audio_input_dim=1024, output_dim=1024, num_heads=8):
|
| 96 |
-
super().__init__()
|
| 97 |
-
self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
| 98 |
-
self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
| 99 |
-
self.image_audio_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
| 100 |
-
self.audio_image_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
| 101 |
-
self.fusion_layer = nn.Sequential(
|
| 102 |
-
nn.LayerNorm(output_dim * 2),
|
| 103 |
-
nn.Linear(output_dim * 2, output_dim),
|
| 104 |
-
nn.GELU(),
|
| 105 |
-
nn.Linear(output_dim, output_dim)
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
def forward(self, image_embedding=None, audio_embedding=None):
|
| 109 |
-
# Add shape validation and adjustment
|
| 110 |
-
if image_embedding is not None and image_embedding.dim() < 2:
|
| 111 |
-
raise ValueError("Expected `image_embedding` to have at least 2 dimensions.")
|
| 112 |
-
if audio_embedding is not None and audio_embedding.dim() < 2:
|
| 113 |
-
raise ValueError("Expected `audio_embedding` to have at least 2 dimensions.")
|
| 114 |
-
if image_embedding is not None and len(image_embedding.shape) == 2:
|
| 115 |
-
image_embedding = image_embedding.unsqueeze(1) # Add sequence dimension
|
| 116 |
-
if audio_embedding is not None and len(audio_embedding.shape) == 2:
|
| 117 |
-
audio_embedding = audio_embedding.unsqueeze(1) # Add sequence dimension
|
| 118 |
-
|
| 119 |
-
# Initial projections
|
| 120 |
-
projected_image = self.image_proj(image_embedding) if image_embedding is not None else None
|
| 121 |
-
projected_audio = self.audio_proj(audio_embedding) if audio_embedding is not None else None
|
| 122 |
-
|
| 123 |
-
if projected_image is not None and projected_audio is not None:
|
| 124 |
-
# Ensure correct shapes for cross-attention
|
| 125 |
-
attended_image = self.image_audio_cross_attn(projected_image, projected_audio)
|
| 126 |
-
attended_audio = self.audio_image_cross_attn(projected_audio, projected_image)
|
| 127 |
-
|
| 128 |
-
# Combine the attended features
|
| 129 |
-
fused_features = torch.cat([attended_image, attended_audio], dim=-1)
|
| 130 |
-
final_output = self.fusion_layer(fused_features)
|
| 131 |
-
|
| 132 |
-
return final_output, final_output
|
| 133 |
-
|
| 134 |
-
elif projected_image is not None:
|
| 135 |
-
return projected_image, None
|
| 136 |
-
elif projected_audio is not None:
|
| 137 |
-
return None, projected_audio
|
| 138 |
-
else:
|
| 139 |
-
return None, None
|
| 140 |
-
|
| 141 |
-
# Update the Phi3WithProjector to use the enhanced projector
|
| 142 |
-
class Phi3WithProjector(PreTrainedModel):
|
| 143 |
-
def __init__(self, config, phi3_model, projector):
|
| 144 |
-
super().__init__(config)
|
| 145 |
-
self.phi3_model = phi3_model
|
| 146 |
-
self.projector = projector
|
| 147 |
-
self.supports_gradient_checkpointing = True
|
| 148 |
-
|
| 149 |
-
def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None,
|
| 150 |
-
image_embeddings=None, audio_embeddings=None, labels=None, **kwargs):
|
| 151 |
-
if inputs_embeds is None:
|
| 152 |
-
inputs_embeds = self.phi3_model.get_input_embeddings()(input_ids)
|
| 153 |
-
|
| 154 |
-
# Get fused embeddings from enhanced projector
|
| 155 |
-
projected_features, _ = self.projector(image_embeddings, audio_embeddings)
|
| 156 |
-
|
| 157 |
-
# Concatenate embeddings if we have projected features
|
| 158 |
-
if projected_features is not None:
|
| 159 |
-
combined_embeddings = torch.cat([inputs_embeds, projected_features.unsqueeze(1)], dim=1)
|
| 160 |
-
# Extend attention mask
|
| 161 |
-
extended_attention_mask = torch.cat([
|
| 162 |
-
attention_mask,
|
| 163 |
-
torch.ones((attention_mask.shape[0], 1), device=attention_mask.device)
|
| 164 |
-
], dim=1)
|
| 165 |
-
else:
|
| 166 |
-
combined_embeddings = inputs_embeds
|
| 167 |
-
extended_attention_mask = attention_mask
|
| 168 |
-
|
| 169 |
-
# Adjust labels if needed
|
| 170 |
-
if labels is not None and projected_features is not None:
|
| 171 |
-
labels = torch.cat([
|
| 172 |
-
labels,
|
| 173 |
-
torch.full((labels.shape[0], 1), -100, dtype=labels.dtype, device=labels.device)
|
| 174 |
-
], dim=1)
|
| 175 |
-
|
| 176 |
-
return self.phi3_model(
|
| 177 |
-
inputs_embeds=combined_embeddings,
|
| 178 |
-
attention_mask=extended_attention_mask,
|
| 179 |
-
labels=labels,
|
| 180 |
-
**kwargs
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
class MultimodalProjector(nn.Module):
|
| 185 |
-
def __init__(self, image_input_dim, audio_input_dim, output_dim):
|
| 186 |
-
super().__init__()
|
| 187 |
-
self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
| 188 |
-
self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
| 189 |
-
|
| 190 |
-
def forward(self, image_embedding=None, audio_embedding=None):
|
| 191 |
-
projected_image = self.image_proj(image_embedding) if image_embedding is not None else None
|
| 192 |
-
projected_audio = self.audio_proj(audio_embedding) if audio_embedding is not None else None
|
| 193 |
-
return projected_image, projected_audio
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
class Phi3WithProjector(PreTrainedModel):
|
| 198 |
-
def __init__(self, config, phi3_model, projector):
|
| 199 |
-
super().__init__(config)
|
| 200 |
-
self.phi3_model = phi3_model
|
| 201 |
-
self.projector = projector
|
| 202 |
-
self.supports_gradient_checkpointing = True
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, image_embeddings=None, audio_embeddings=None, labels=None, **kwargs):
|
| 206 |
-
# Use get_input_embeddings() to retrieve the embeddings layer
|
| 207 |
-
if inputs_embeds is None:
|
| 208 |
-
inputs_embeds = self.phi3_model.get_input_embeddings()(input_ids)
|
| 209 |
-
|
| 210 |
-
# Project both image and audio embeddings to the appropriate dimension
|
| 211 |
-
projected_image, projected_audio = self.projector(image_embeddings, audio_embeddings)
|
| 212 |
-
|
| 213 |
-
# Concatenate the embeddings
|
| 214 |
-
embeddings_to_concat = [inputs_embeds]
|
| 215 |
-
if projected_image is not None:
|
| 216 |
-
embeddings_to_concat.append(projected_image.unsqueeze(1))
|
| 217 |
-
if projected_audio is not None:
|
| 218 |
-
embeddings_to_concat.append(projected_audio.unsqueeze(1))
|
| 219 |
-
|
| 220 |
-
combined_embeddings = torch.cat(embeddings_to_concat, dim=1)
|
| 221 |
-
|
| 222 |
-
# Modify how the attention mask is extended
|
| 223 |
-
extended_attention_mask = attention_mask.clone() # Start with a copy
|
| 224 |
-
|
| 225 |
-
# Extend for image and audio, if present
|
| 226 |
-
if projected_image is not None:
|
| 227 |
-
extended_attention_mask = torch.cat([extended_attention_mask, torch.ones_like(extended_attention_mask[:, :1])], dim=1)
|
| 228 |
-
if projected_audio is not None:
|
| 229 |
-
extended_attention_mask = torch.cat([extended_attention_mask, torch.ones_like(extended_attention_mask[:, :1])], dim=1)
|
| 230 |
-
|
| 231 |
-
# Adjust labels to match the extended input sequence length
|
| 232 |
-
if labels is not None:
|
| 233 |
-
# Pad labels with -100 to ignore the added tokens in the loss calculation
|
| 234 |
-
num_added_tokens = sum(1 for emb in [projected_image, projected_audio] if emb is not None)
|
| 235 |
-
labels = torch.cat([labels, torch.full((labels.shape[0], num_added_tokens), -100, dtype=labels.dtype, device=labels.device)], dim=1)
|
| 236 |
-
outputs = self.phi3_model(
|
| 237 |
-
inputs_embeds=combined_embeddings,
|
| 238 |
-
attention_mask=extended_attention_mask,
|
| 239 |
-
labels=labels,
|
| 240 |
-
**kwargs
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
# Add auxiliary losses for multimodal alignment
|
| 244 |
-
if image_embeddings is not None or audio_embeddings is not None:
|
| 245 |
-
loss = outputs.loss
|
| 246 |
-
|
| 247 |
-
# Add contrastive loss for multimodal alignment
|
| 248 |
-
if image_embeddings is not None and audio_embeddings is not None:
|
| 249 |
-
img_proj, audio_proj = self.projector(image_embeddings, audio_embeddings)
|
| 250 |
-
contrastive_loss = self.compute_contrastive_loss(img_proj, audio_proj)
|
| 251 |
-
loss = loss + 0.1 * contrastive_loss # Weight the auxiliary loss
|
| 252 |
-
|
| 253 |
-
outputs.loss = loss
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
return outputs
|
| 259 |
-
|
| 260 |
-
def get_input_embeddings(self):
|
| 261 |
-
"""Returns the model's input embeddings."""
|
| 262 |
-
return self.phi3_model.get_input_embeddings()
|
| 263 |
-
|
| 264 |
-
def set_input_embeddings(self, value):
|
| 265 |
-
"""Sets the model's input embeddings."""
|
| 266 |
-
self.phi3_model.set_input_embeddings(value)
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
# Instead, use the built-in gradient checkpointing
|
| 270 |
-
def enable_gradient_checkpointing(self):
|
| 271 |
-
"""Enable gradient checkpointing for the model."""
|
| 272 |
-
if hasattr(self.phi3_model, "gradient_checkpointing_enable"):
|
| 273 |
-
self.phi3_model.gradient_checkpointing_enable()
|
| 274 |
-
else:
|
| 275 |
-
self.phi3_model.config.use_cache = False
|
| 276 |
-
self.phi3_model.train() # Ensure model is in training mode
|
| 277 |
-
|
| 278 |
-
def disable_gradient_checkpointing(self):
|
| 279 |
-
"""Disable gradient checkpointing for the model."""
|
| 280 |
-
if hasattr(self.phi3_model, "gradient_checkpointing_disable"):
|
| 281 |
-
self.phi3_model.gradient_checkpointing_disable()
|
| 282 |
-
else:
|
| 283 |
-
self.phi3_model.config.use_cache = True
|
| 284 |
-
|
| 285 |
-
def compute_contrastive_loss(self, img_features, audio_features):
|
| 286 |
-
# Normalize features
|
| 287 |
-
img_features = F.normalize(img_features, dim=-1)
|
| 288 |
-
audio_features = F.normalize(audio_features, dim=-1)
|
| 289 |
-
|
| 290 |
-
# Compute similarity matrix
|
| 291 |
-
similarity = torch.matmul(img_features, audio_features.transpose(0, 1))
|
| 292 |
-
|
| 293 |
-
# Temperature-scaled cross entropy loss
|
| 294 |
-
temperature = 0.07
|
| 295 |
-
labels = torch.arange(similarity.size(0)).to(similarity.device)
|
| 296 |
-
loss = F.cross_entropy(similarity / temperature, labels)
|
| 297 |
-
|
| 298 |
-
return loss
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Step 2: Import necessary libraries
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 5 |
+
from peft import PeftConfig, PeftModel
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from transformers.cache_utils import DynamicCache, StaticCache
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Step 3: Set device and default dtype
|
| 13 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
torch.set_default_dtype(torch.float16)
|
| 15 |
+
|
| 16 |
+
# Step 4: Load CLIP model and processor
|
| 17 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16).to(DEVICE)
|
| 18 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", use_fast=True)
|
| 19 |
+
|
| 20 |
+
# Step 5: Define the MultiModalModel class
|
| 21 |
+
class MultiModalModel(nn.Module):
|
| 22 |
+
def __init__(self, phi_model_name="microsoft/phi-3-mini-4k-instruct", clip_model_name="openai/clip-vit-base-patch32"):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.phi = None # Will be set after loading the PEFT model
|
| 25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
| 26 |
+
self.tokenizer.add_special_tokens({"additional_special_tokens": ["[IMG]"], "pad_token": "<pad>"})
|
| 27 |
+
self.clip = CLIPModel.from_pretrained(clip_model_name, torch_dtype=torch.float16).eval().to(DEVICE)
|
| 28 |
+
image_embedding_dim = self.clip.config.projection_dim
|
| 29 |
+
phi_hidden_size = 3072 # Hardcoded for Phi-3 mini
|
| 30 |
+
self.image_projection = nn.Sequential(
|
| 31 |
+
nn.Linear(image_embedding_dim, phi_hidden_size, dtype=torch.float16),
|
| 32 |
+
nn.LayerNorm(phi_hidden_size, dtype=torch.float16),
|
| 33 |
+
nn.Dropout(0.1)
|
| 34 |
+
).to(DEVICE)
|
| 35 |
+
nn.init.xavier_uniform_(self.image_projection[0].weight, gain=1.0)
|
| 36 |
+
nn.init.zeros_(self.image_projection[0].bias)
|
| 37 |
+
|
| 38 |
+
def forward(self, text_input_ids, attention_mask=None, image_embedding=None):
|
| 39 |
+
image_embedding = torch.clamp(image_embedding, min=-1e4, max=1e4)
|
| 40 |
+
image_embedding = F.normalize(image_embedding, dim=-1, eps=1e-5).to(torch.float16)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
self.image_projection[0].weight.clamp_(-1.0, 1.0)
|
| 43 |
+
self.image_projection[0].bias.clamp_(-1.0, 1.0)
|
| 44 |
+
projected_image = 1.0 * self.image_projection(image_embedding)
|
| 45 |
+
projected_image = torch.clamp(projected_image, min=-1e4, max=1e4)
|
| 46 |
+
if torch.isnan(projected_image).any() or torch.isinf(projected_image).any():
|
| 47 |
+
print("Warning: Projected image contains NaN or Inf values after clamping, replacing with zeros")
|
| 48 |
+
projected_image = torch.where(
|
| 49 |
+
torch.logical_or(torch.isnan(projected_image), torch.isinf(projected_image)),
|
| 50 |
+
torch.zeros_like(projected_image),
|
| 51 |
+
projected_image
|
| 52 |
+
)
|
| 53 |
+
if projected_image.dim() == 2:
|
| 54 |
+
projected_image = projected_image.unsqueeze(1)
|
| 55 |
+
text_embeddings = self.phi.get_input_embeddings()(text_input_ids)
|
| 56 |
+
fused_embeddings = text_embeddings.clone()
|
| 57 |
+
img_token_id = self.tokenizer.convert_tokens_to_ids("[IMG]")
|
| 58 |
+
img_token_mask = (text_input_ids == img_token_id)
|
| 59 |
+
for i in range(fused_embeddings.shape[0]):
|
| 60 |
+
img_positions = img_token_mask[i].nonzero(as_tuple=True)[0]
|
| 61 |
+
if img_positions.numel() > 0:
|
| 62 |
+
fused_embeddings[i, img_positions[0], :] = projected_image[i, 0, :]
|
| 63 |
+
if torch.isnan(fused_embeddings).any() or torch.isinf(fused_embeddings).any():
|
| 64 |
+
print("Warning: Fused embeddings contain NaN or Inf values, replacing with zeros")
|
| 65 |
+
fused_embeddings = torch.where(
|
| 66 |
+
torch.logical_or(torch.isnan(fused_embeddings), torch.isinf(fused_embeddings)),
|
| 67 |
+
torch.zeros_like(fused_embeddings),
|
| 68 |
+
fused_embeddings
|
| 69 |
+
)
|
| 70 |
+
return fused_embeddings
|
| 71 |
+
|
| 72 |
+
# Step 6: Load the fine-tuned model weights from Epoch_0
|
| 73 |
+
def load_model():
|
| 74 |
+
|
| 75 |
+
# 1. Load PEFT Config
|
| 76 |
+
peft_model_id = "/content/drive/MyDrive/V6_Checkpoints/Epoch_peft_1" # Path to the saved PEFT directory
|
| 77 |
+
config = PeftConfig.from_pretrained(peft_model_id) #Use the config to determine the base model
|
| 78 |
+
|
| 79 |
+
attn_implementation = "eager"
|
| 80 |
+
cache = DynamicCache()
|
| 81 |
+
|
| 82 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 83 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 84 |
+
config.base_model_name_or_path,
|
| 85 |
+
return_dict=True,
|
| 86 |
+
quantization_config=quantization_config,
|
| 87 |
+
device_map="auto",
|
| 88 |
+
trust_remote_code=False,
|
| 89 |
+
torch_dtype=torch.float16,
|
| 90 |
+
attn_implementation="eager"
|
| 91 |
+
)
|
| 92 |
+
base_model.gradient_checkpointing_enable()
|
| 93 |
+
peft_model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
| 95 |
+
special_tokens = {"additional_special_tokens": ["[IMG]"], "pad_token": "<pad>"}
|
| 96 |
+
tokenizer.add_special_tokens(special_tokens)
|
| 97 |
+
peft_model.resize_token_embeddings(len(tokenizer))
|
| 98 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 99 |
+
|
| 100 |
+
model = MultiModalModel(phi_model_name=config.base_model_name_or_path)
|
| 101 |
+
#model.load_state_dict(torch.load("/content/drive/MyDrive/V7_Checkpoints_2ndMarch2025/Epoch_0/model_state_dict.pth"), strict=False)
|
| 102 |
+
model.phi = peft_model
|
| 103 |
+
model.to(DEVICE)
|
| 104 |
+
model.eval()
|
| 105 |
+
return model, tokenizer
|
| 106 |
+
|