Spaces:
Running
Running
Commit
·
dfd33e5
1
Parent(s):
45cbcfb
init
Browse files- .gitignore +1 -0
- Model/__init__.py +2 -0
- Model/bert/__init__.py +1 -0
- Model/bert/med.py +940 -0
- Model/clip/__init__.py +1 -0
- Model/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- Model/clip/clip.py +237 -0
- Model/clip/model.py +437 -0
- Model/clip/simple_tokenizer.py +132 -0
- Model/trcaptionnet.py +108 -0
- README.md +105 -13
- app.py +62 -0
- demo.py +54 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/checkpoints/
|
Model/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .trcaptionnet import TRCaptionNet
|
| 2 |
+
from .clip.clip import _transform as clip_transform
|
Model/bert/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .med import BertLMHeadModel, BertConfig
|
Model/bert/med.py
ADDED
|
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Based on huggingface code base
|
| 3 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
| 4 |
+
'''
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from typing import Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch import Tensor, device
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from torch import nn
|
| 13 |
+
from torch.nn import CrossEntropyLoss
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 18 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 19 |
+
CausalLMOutputWithCrossAttentions,
|
| 20 |
+
)
|
| 21 |
+
from transformers.modeling_utils import (
|
| 22 |
+
PreTrainedModel,
|
| 23 |
+
apply_chunking_to_forward,
|
| 24 |
+
find_pruneable_heads_and_indices,
|
| 25 |
+
prune_linear_layer,
|
| 26 |
+
)
|
| 27 |
+
from transformers.utils import logging
|
| 28 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class BertEmbeddings(nn.Module):
|
| 35 |
+
"""Construct the embeddings from word and position embeddings."""
|
| 36 |
+
|
| 37 |
+
def __init__(self, config):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 40 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 41 |
+
|
| 42 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 43 |
+
# any TensorFlow checkpoint file
|
| 44 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 45 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 46 |
+
|
| 47 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 48 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 49 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 50 |
+
|
| 51 |
+
self.config = config
|
| 52 |
+
|
| 53 |
+
def forward(
|
| 54 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
| 55 |
+
):
|
| 56 |
+
if input_ids is not None:
|
| 57 |
+
input_shape = input_ids.size()
|
| 58 |
+
else:
|
| 59 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 60 |
+
|
| 61 |
+
seq_length = input_shape[1]
|
| 62 |
+
|
| 63 |
+
if position_ids is None:
|
| 64 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 65 |
+
|
| 66 |
+
if inputs_embeds is None:
|
| 67 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 68 |
+
|
| 69 |
+
embeddings = inputs_embeds
|
| 70 |
+
|
| 71 |
+
if self.position_embedding_type == "absolute":
|
| 72 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 73 |
+
embeddings += position_embeddings
|
| 74 |
+
embeddings = self.LayerNorm(embeddings)
|
| 75 |
+
embeddings = self.dropout(embeddings)
|
| 76 |
+
return embeddings
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class BertSelfAttention(nn.Module):
|
| 80 |
+
def __init__(self, config, is_cross_attention):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.config = config
|
| 83 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 84 |
+
raise ValueError(
|
| 85 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
| 86 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
self.num_attention_heads = config.num_attention_heads
|
| 90 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 91 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 92 |
+
|
| 93 |
+
# self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 94 |
+
# if is_cross_attention:
|
| 95 |
+
# self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
| 96 |
+
# self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
| 97 |
+
# else:
|
| 98 |
+
# self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 99 |
+
# self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 100 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 101 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 102 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 103 |
+
|
| 104 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 105 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 106 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 107 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 108 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
| 109 |
+
self.save_attention = False
|
| 110 |
+
|
| 111 |
+
def save_attn_gradients(self, attn_gradients):
|
| 112 |
+
self.attn_gradients = attn_gradients
|
| 113 |
+
|
| 114 |
+
def get_attn_gradients(self):
|
| 115 |
+
return self.attn_gradients
|
| 116 |
+
|
| 117 |
+
def save_attention_map(self, attention_map):
|
| 118 |
+
self.attention_map = attention_map
|
| 119 |
+
|
| 120 |
+
def get_attention_map(self):
|
| 121 |
+
return self.attention_map
|
| 122 |
+
|
| 123 |
+
def transpose_for_scores(self, x):
|
| 124 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 125 |
+
x = x.view(*new_x_shape)
|
| 126 |
+
return x.permute(0, 2, 1, 3)
|
| 127 |
+
|
| 128 |
+
def forward(
|
| 129 |
+
self,
|
| 130 |
+
hidden_states,
|
| 131 |
+
attention_mask=None,
|
| 132 |
+
head_mask=None,
|
| 133 |
+
encoder_hidden_states=None,
|
| 134 |
+
encoder_attention_mask=None,
|
| 135 |
+
past_key_value=None,
|
| 136 |
+
output_attentions=False,
|
| 137 |
+
):
|
| 138 |
+
mixed_query_layer = self.query(hidden_states)
|
| 139 |
+
|
| 140 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 141 |
+
# and values come from an encoder; the attention mask needs to be
|
| 142 |
+
# such that the encoder's padding tokens are not attended to.
|
| 143 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 144 |
+
|
| 145 |
+
if is_cross_attention:
|
| 146 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 147 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 148 |
+
attention_mask = encoder_attention_mask
|
| 149 |
+
elif past_key_value is not None:
|
| 150 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 151 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 152 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 153 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 154 |
+
else:
|
| 155 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 156 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 157 |
+
|
| 158 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 159 |
+
|
| 160 |
+
past_key_value = (key_layer, value_layer)
|
| 161 |
+
|
| 162 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 163 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 164 |
+
|
| 165 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 166 |
+
seq_length = hidden_states.size()[1]
|
| 167 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
| 168 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
| 169 |
+
distance = position_ids_l - position_ids_r
|
| 170 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
| 171 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
| 172 |
+
|
| 173 |
+
if self.position_embedding_type == "relative_key":
|
| 174 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 175 |
+
attention_scores = attention_scores + relative_position_scores
|
| 176 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 177 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 178 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
| 179 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
| 180 |
+
|
| 181 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 182 |
+
if attention_mask is not None:
|
| 183 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 184 |
+
attention_scores = attention_scores + attention_mask
|
| 185 |
+
|
| 186 |
+
# Normalize the attention scores to probabilities.
|
| 187 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
| 188 |
+
|
| 189 |
+
if is_cross_attention and self.save_attention:
|
| 190 |
+
self.save_attention_map(attention_probs)
|
| 191 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
| 192 |
+
|
| 193 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 194 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 195 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
| 196 |
+
|
| 197 |
+
# Mask heads if we want to
|
| 198 |
+
if head_mask is not None:
|
| 199 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
| 200 |
+
|
| 201 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
| 202 |
+
|
| 203 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 204 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 205 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 206 |
+
|
| 207 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 208 |
+
|
| 209 |
+
outputs = outputs + (past_key_value,)
|
| 210 |
+
return outputs
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class BertSelfOutput(nn.Module):
|
| 214 |
+
def __init__(self, config):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 217 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 218 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 219 |
+
|
| 220 |
+
def forward(self, hidden_states, input_tensor):
|
| 221 |
+
hidden_states = self.dense(hidden_states)
|
| 222 |
+
hidden_states = self.dropout(hidden_states)
|
| 223 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 224 |
+
return hidden_states
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class BertAttention(nn.Module):
|
| 228 |
+
def __init__(self, config, is_cross_attention=False):
|
| 229 |
+
super().__init__()
|
| 230 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
| 231 |
+
self.output = BertSelfOutput(config)
|
| 232 |
+
self.pruned_heads = set()
|
| 233 |
+
|
| 234 |
+
def prune_heads(self, heads):
|
| 235 |
+
if len(heads) == 0:
|
| 236 |
+
return
|
| 237 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 238 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Prune linear layers
|
| 242 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 243 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 244 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 245 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 246 |
+
|
| 247 |
+
# Update hyper params and store pruned heads
|
| 248 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 249 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 250 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 251 |
+
|
| 252 |
+
def forward(
|
| 253 |
+
self,
|
| 254 |
+
hidden_states,
|
| 255 |
+
attention_mask=None,
|
| 256 |
+
head_mask=None,
|
| 257 |
+
encoder_hidden_states=None,
|
| 258 |
+
encoder_attention_mask=None,
|
| 259 |
+
past_key_value=None,
|
| 260 |
+
output_attentions=False,
|
| 261 |
+
):
|
| 262 |
+
self_outputs = self.self(
|
| 263 |
+
hidden_states,
|
| 264 |
+
attention_mask,
|
| 265 |
+
head_mask,
|
| 266 |
+
encoder_hidden_states,
|
| 267 |
+
encoder_attention_mask,
|
| 268 |
+
past_key_value,
|
| 269 |
+
output_attentions,
|
| 270 |
+
)
|
| 271 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 272 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 273 |
+
return outputs
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class BertIntermediate(nn.Module):
|
| 277 |
+
def __init__(self, config):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 280 |
+
if isinstance(config.hidden_act, str):
|
| 281 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 282 |
+
else:
|
| 283 |
+
self.intermediate_act_fn = config.hidden_act
|
| 284 |
+
|
| 285 |
+
def forward(self, hidden_states):
|
| 286 |
+
hidden_states = self.dense(hidden_states)
|
| 287 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 288 |
+
return hidden_states
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class BertOutput(nn.Module):
|
| 292 |
+
def __init__(self, config):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 295 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 296 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 297 |
+
|
| 298 |
+
def forward(self, hidden_states, input_tensor):
|
| 299 |
+
hidden_states = self.dense(hidden_states)
|
| 300 |
+
hidden_states = self.dropout(hidden_states)
|
| 301 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 302 |
+
return hidden_states
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
class BertLayer(nn.Module):
|
| 306 |
+
def __init__(self, config, layer_num):
|
| 307 |
+
super().__init__()
|
| 308 |
+
self.config = config
|
| 309 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 310 |
+
self.seq_len_dim = 1
|
| 311 |
+
self.attention = BertAttention(config)
|
| 312 |
+
self.layer_num = layer_num
|
| 313 |
+
if self.config.add_cross_attention:
|
| 314 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
| 315 |
+
self.intermediate = BertIntermediate(config)
|
| 316 |
+
self.output = BertOutput(config)
|
| 317 |
+
|
| 318 |
+
def forward(
|
| 319 |
+
self,
|
| 320 |
+
hidden_states,
|
| 321 |
+
attention_mask=None,
|
| 322 |
+
head_mask=None,
|
| 323 |
+
encoder_hidden_states=None,
|
| 324 |
+
encoder_attention_mask=None,
|
| 325 |
+
past_key_value=None,
|
| 326 |
+
output_attentions=False,
|
| 327 |
+
mode=None,
|
| 328 |
+
):
|
| 329 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 330 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 331 |
+
self_attention_outputs = self.attention(
|
| 332 |
+
hidden_states,
|
| 333 |
+
attention_mask,
|
| 334 |
+
head_mask,
|
| 335 |
+
output_attentions=output_attentions,
|
| 336 |
+
past_key_value=self_attn_past_key_value,
|
| 337 |
+
)
|
| 338 |
+
attention_output = self_attention_outputs[0]
|
| 339 |
+
|
| 340 |
+
outputs = self_attention_outputs[1:-1]
|
| 341 |
+
present_key_value = self_attention_outputs[-1]
|
| 342 |
+
|
| 343 |
+
if mode=='multimodal':
|
| 344 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
| 345 |
+
|
| 346 |
+
cross_attention_outputs = self.crossattention(
|
| 347 |
+
attention_output,
|
| 348 |
+
attention_mask,
|
| 349 |
+
head_mask,
|
| 350 |
+
encoder_hidden_states,
|
| 351 |
+
encoder_attention_mask,
|
| 352 |
+
output_attentions=output_attentions,
|
| 353 |
+
)
|
| 354 |
+
attention_output = cross_attention_outputs[0]
|
| 355 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 356 |
+
layer_output = apply_chunking_to_forward(
|
| 357 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 358 |
+
)
|
| 359 |
+
outputs = (layer_output,) + outputs
|
| 360 |
+
|
| 361 |
+
outputs = outputs + (present_key_value,)
|
| 362 |
+
|
| 363 |
+
return outputs
|
| 364 |
+
|
| 365 |
+
def feed_forward_chunk(self, attention_output):
|
| 366 |
+
intermediate_output = self.intermediate(attention_output)
|
| 367 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 368 |
+
return layer_output
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class BertEncoder(nn.Module):
|
| 372 |
+
def __init__(self, config):
|
| 373 |
+
super().__init__()
|
| 374 |
+
self.config = config
|
| 375 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
| 376 |
+
self.gradient_checkpointing = False
|
| 377 |
+
|
| 378 |
+
def forward(
|
| 379 |
+
self,
|
| 380 |
+
hidden_states,
|
| 381 |
+
attention_mask=None,
|
| 382 |
+
head_mask=None,
|
| 383 |
+
encoder_hidden_states=None,
|
| 384 |
+
encoder_attention_mask=None,
|
| 385 |
+
past_key_values=None,
|
| 386 |
+
use_cache=None,
|
| 387 |
+
output_attentions=False,
|
| 388 |
+
output_hidden_states=False,
|
| 389 |
+
return_dict=True,
|
| 390 |
+
mode='multimodal',
|
| 391 |
+
):
|
| 392 |
+
all_hidden_states = () if output_hidden_states else None
|
| 393 |
+
all_self_attentions = () if output_attentions else None
|
| 394 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 395 |
+
|
| 396 |
+
next_decoder_cache = () if use_cache else None
|
| 397 |
+
|
| 398 |
+
for i in range(self.config.num_hidden_layers):
|
| 399 |
+
layer_module = self.layer[i]
|
| 400 |
+
if output_hidden_states:
|
| 401 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 402 |
+
|
| 403 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 404 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 405 |
+
|
| 406 |
+
if self.gradient_checkpointing and self.training:
|
| 407 |
+
|
| 408 |
+
if use_cache:
|
| 409 |
+
logger.warn(
|
| 410 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 411 |
+
)
|
| 412 |
+
use_cache = False
|
| 413 |
+
|
| 414 |
+
def create_custom_forward(module):
|
| 415 |
+
def custom_forward(*inputs):
|
| 416 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 417 |
+
|
| 418 |
+
return custom_forward
|
| 419 |
+
|
| 420 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 421 |
+
create_custom_forward(layer_module),
|
| 422 |
+
hidden_states,
|
| 423 |
+
attention_mask,
|
| 424 |
+
layer_head_mask,
|
| 425 |
+
encoder_hidden_states,
|
| 426 |
+
encoder_attention_mask,
|
| 427 |
+
mode=mode,
|
| 428 |
+
)
|
| 429 |
+
else:
|
| 430 |
+
layer_outputs = layer_module(
|
| 431 |
+
hidden_states,
|
| 432 |
+
attention_mask,
|
| 433 |
+
layer_head_mask,
|
| 434 |
+
encoder_hidden_states,
|
| 435 |
+
encoder_attention_mask,
|
| 436 |
+
past_key_value,
|
| 437 |
+
output_attentions,
|
| 438 |
+
mode=mode,
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
hidden_states = layer_outputs[0]
|
| 442 |
+
if use_cache:
|
| 443 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 444 |
+
if output_attentions:
|
| 445 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 446 |
+
|
| 447 |
+
if output_hidden_states:
|
| 448 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 449 |
+
|
| 450 |
+
if not return_dict:
|
| 451 |
+
return tuple(
|
| 452 |
+
v
|
| 453 |
+
for v in [
|
| 454 |
+
hidden_states,
|
| 455 |
+
next_decoder_cache,
|
| 456 |
+
all_hidden_states,
|
| 457 |
+
all_self_attentions,
|
| 458 |
+
all_cross_attentions,
|
| 459 |
+
]
|
| 460 |
+
if v is not None
|
| 461 |
+
)
|
| 462 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 463 |
+
last_hidden_state=hidden_states,
|
| 464 |
+
past_key_values=next_decoder_cache,
|
| 465 |
+
hidden_states=all_hidden_states,
|
| 466 |
+
attentions=all_self_attentions,
|
| 467 |
+
cross_attentions=all_cross_attentions,
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
class BertPooler(nn.Module):
|
| 472 |
+
def __init__(self, config):
|
| 473 |
+
super().__init__()
|
| 474 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 475 |
+
self.activation = nn.Tanh()
|
| 476 |
+
|
| 477 |
+
def forward(self, hidden_states):
|
| 478 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 479 |
+
# to the first token.
|
| 480 |
+
first_token_tensor = hidden_states[:, 0]
|
| 481 |
+
pooled_output = self.dense(first_token_tensor)
|
| 482 |
+
pooled_output = self.activation(pooled_output)
|
| 483 |
+
return pooled_output
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
class BertPredictionHeadTransform(nn.Module):
|
| 487 |
+
def __init__(self, config):
|
| 488 |
+
super().__init__()
|
| 489 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 490 |
+
if isinstance(config.hidden_act, str):
|
| 491 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 492 |
+
else:
|
| 493 |
+
self.transform_act_fn = config.hidden_act
|
| 494 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 495 |
+
|
| 496 |
+
def forward(self, hidden_states):
|
| 497 |
+
hidden_states = self.dense(hidden_states)
|
| 498 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 499 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 500 |
+
return hidden_states
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
class BertLMPredictionHead(nn.Module):
|
| 504 |
+
def __init__(self, config):
|
| 505 |
+
super().__init__()
|
| 506 |
+
self.transform = BertPredictionHeadTransform(config)
|
| 507 |
+
|
| 508 |
+
# The output weights are the same as the input embeddings, but there is
|
| 509 |
+
# an output-only bias for each token.
|
| 510 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 511 |
+
|
| 512 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 513 |
+
|
| 514 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 515 |
+
self.decoder.bias = self.bias
|
| 516 |
+
|
| 517 |
+
def forward(self, hidden_states):
|
| 518 |
+
hidden_states = self.transform(hidden_states)
|
| 519 |
+
hidden_states = self.decoder(hidden_states)
|
| 520 |
+
return hidden_states
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
class BertOnlyMLMHead(nn.Module):
|
| 524 |
+
def __init__(self, config):
|
| 525 |
+
super().__init__()
|
| 526 |
+
self.predictions = BertLMPredictionHead(config)
|
| 527 |
+
|
| 528 |
+
def forward(self, sequence_output):
|
| 529 |
+
prediction_scores = self.predictions(sequence_output)
|
| 530 |
+
return prediction_scores
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
class BertPreTrainedModel(PreTrainedModel):
|
| 534 |
+
"""
|
| 535 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 536 |
+
models.
|
| 537 |
+
"""
|
| 538 |
+
|
| 539 |
+
config_class = BertConfig
|
| 540 |
+
base_model_prefix = "bert"
|
| 541 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 542 |
+
|
| 543 |
+
def _init_weights(self, module):
|
| 544 |
+
""" Initialize the weights """
|
| 545 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 546 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 547 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 548 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 549 |
+
elif isinstance(module, nn.LayerNorm):
|
| 550 |
+
module.bias.data.zero_()
|
| 551 |
+
module.weight.data.fill_(1.0)
|
| 552 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 553 |
+
module.bias.data.zero_()
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class BertModel(BertPreTrainedModel):
|
| 557 |
+
"""
|
| 558 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 559 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
| 560 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
| 561 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 562 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
| 563 |
+
input to the forward pass.
|
| 564 |
+
"""
|
| 565 |
+
|
| 566 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 567 |
+
super().__init__(config)
|
| 568 |
+
self.config = config
|
| 569 |
+
|
| 570 |
+
self.embeddings = BertEmbeddings(config)
|
| 571 |
+
|
| 572 |
+
self.encoder = BertEncoder(config)
|
| 573 |
+
|
| 574 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 575 |
+
|
| 576 |
+
self.init_weights()
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
def get_input_embeddings(self):
|
| 580 |
+
return self.embeddings.word_embeddings
|
| 581 |
+
|
| 582 |
+
def set_input_embeddings(self, value):
|
| 583 |
+
self.embeddings.word_embeddings = value
|
| 584 |
+
|
| 585 |
+
def _prune_heads(self, heads_to_prune):
|
| 586 |
+
"""
|
| 587 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 588 |
+
class PreTrainedModel
|
| 589 |
+
"""
|
| 590 |
+
for layer, heads in heads_to_prune.items():
|
| 591 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
| 595 |
+
"""
|
| 596 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
| 597 |
+
|
| 598 |
+
Arguments:
|
| 599 |
+
attention_mask (:obj:`torch.Tensor`):
|
| 600 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
| 601 |
+
input_shape (:obj:`Tuple[int]`):
|
| 602 |
+
The shape of the input to the model.
|
| 603 |
+
device: (:obj:`torch.device`):
|
| 604 |
+
The device of the input to the model.
|
| 605 |
+
|
| 606 |
+
Returns:
|
| 607 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
| 608 |
+
"""
|
| 609 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 610 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 611 |
+
if attention_mask.dim() == 3:
|
| 612 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
| 613 |
+
elif attention_mask.dim() == 2:
|
| 614 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
| 615 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
| 616 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 617 |
+
if is_decoder:
|
| 618 |
+
batch_size, seq_length = input_shape
|
| 619 |
+
|
| 620 |
+
seq_ids = torch.arange(seq_length, device=device)
|
| 621 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
| 622 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
| 623 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
| 624 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
| 625 |
+
|
| 626 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
| 627 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
| 628 |
+
causal_mask = torch.cat(
|
| 629 |
+
[
|
| 630 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
| 631 |
+
causal_mask,
|
| 632 |
+
],
|
| 633 |
+
axis=-1,
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
| 637 |
+
else:
|
| 638 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
| 639 |
+
else:
|
| 640 |
+
raise ValueError(
|
| 641 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
| 642 |
+
input_shape, attention_mask.shape
|
| 643 |
+
)
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 647 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 648 |
+
# positions we want to attend and -10000.0 for masked positions.
|
| 649 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 650 |
+
# effectively the same as removing these entirely.
|
| 651 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 652 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 653 |
+
return extended_attention_mask
|
| 654 |
+
|
| 655 |
+
def forward(
|
| 656 |
+
self,
|
| 657 |
+
input_ids=None,
|
| 658 |
+
attention_mask=None,
|
| 659 |
+
position_ids=None,
|
| 660 |
+
head_mask=None,
|
| 661 |
+
inputs_embeds=None,
|
| 662 |
+
encoder_embeds=None,
|
| 663 |
+
encoder_hidden_states=None,
|
| 664 |
+
encoder_attention_mask=None,
|
| 665 |
+
past_key_values=None,
|
| 666 |
+
use_cache=None,
|
| 667 |
+
output_attentions=None,
|
| 668 |
+
output_hidden_states=None,
|
| 669 |
+
return_dict=None,
|
| 670 |
+
is_decoder=False,
|
| 671 |
+
mode='multimodal',
|
| 672 |
+
):
|
| 673 |
+
r"""
|
| 674 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
| 675 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 676 |
+
the model is configured as a decoder.
|
| 677 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 678 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 679 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
| 680 |
+
- 1 for tokens that are **not masked**,
|
| 681 |
+
- 0 for tokens that are **masked**.
|
| 682 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 683 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 684 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
| 685 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
| 686 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
| 687 |
+
use_cache (:obj:`bool`, `optional`):
|
| 688 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
| 689 |
+
decoding (see :obj:`past_key_values`).
|
| 690 |
+
"""
|
| 691 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 692 |
+
output_hidden_states = (
|
| 693 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 694 |
+
)
|
| 695 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 696 |
+
|
| 697 |
+
if is_decoder:
|
| 698 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 699 |
+
else:
|
| 700 |
+
use_cache = False
|
| 701 |
+
|
| 702 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 703 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 704 |
+
elif input_ids is not None:
|
| 705 |
+
input_shape = input_ids.size()
|
| 706 |
+
batch_size, seq_length = input_shape
|
| 707 |
+
device = input_ids.device
|
| 708 |
+
elif inputs_embeds is not None:
|
| 709 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 710 |
+
batch_size, seq_length = input_shape
|
| 711 |
+
device = inputs_embeds.device
|
| 712 |
+
elif encoder_embeds is not None:
|
| 713 |
+
input_shape = encoder_embeds.size()[:-1]
|
| 714 |
+
batch_size, seq_length = input_shape
|
| 715 |
+
device = encoder_embeds.device
|
| 716 |
+
else:
|
| 717 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
| 718 |
+
|
| 719 |
+
# past_key_values_length
|
| 720 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 721 |
+
|
| 722 |
+
if attention_mask is None:
|
| 723 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 724 |
+
|
| 725 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 726 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 727 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
| 728 |
+
device, is_decoder)
|
| 729 |
+
|
| 730 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 731 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 732 |
+
if encoder_hidden_states is not None:
|
| 733 |
+
if type(encoder_hidden_states) == list:
|
| 734 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
| 735 |
+
else:
|
| 736 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 737 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 738 |
+
|
| 739 |
+
if type(encoder_attention_mask) == list:
|
| 740 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
| 741 |
+
elif encoder_attention_mask is None:
|
| 742 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 743 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 744 |
+
else:
|
| 745 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 746 |
+
else:
|
| 747 |
+
encoder_extended_attention_mask = None
|
| 748 |
+
|
| 749 |
+
# Prepare head mask if needed
|
| 750 |
+
# 1.0 in head_mask indicate we keep the head
|
| 751 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 752 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 753 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 754 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 755 |
+
|
| 756 |
+
if encoder_embeds is None:
|
| 757 |
+
embedding_output = self.embeddings(
|
| 758 |
+
input_ids=input_ids,
|
| 759 |
+
position_ids=position_ids,
|
| 760 |
+
inputs_embeds=inputs_embeds,
|
| 761 |
+
past_key_values_length=past_key_values_length,
|
| 762 |
+
)
|
| 763 |
+
else:
|
| 764 |
+
embedding_output = encoder_embeds
|
| 765 |
+
|
| 766 |
+
encoder_outputs = self.encoder(
|
| 767 |
+
embedding_output,
|
| 768 |
+
attention_mask=extended_attention_mask,
|
| 769 |
+
head_mask=head_mask,
|
| 770 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 771 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 772 |
+
past_key_values=past_key_values,
|
| 773 |
+
use_cache=use_cache,
|
| 774 |
+
output_attentions=output_attentions,
|
| 775 |
+
output_hidden_states=output_hidden_states,
|
| 776 |
+
return_dict=return_dict,
|
| 777 |
+
mode=mode,
|
| 778 |
+
)
|
| 779 |
+
sequence_output = encoder_outputs[0]
|
| 780 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 781 |
+
|
| 782 |
+
if not return_dict:
|
| 783 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 784 |
+
|
| 785 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 786 |
+
last_hidden_state=sequence_output,
|
| 787 |
+
pooler_output=pooled_output,
|
| 788 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 789 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 790 |
+
attentions=encoder_outputs.attentions,
|
| 791 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
| 797 |
+
|
| 798 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 799 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 800 |
+
|
| 801 |
+
def __init__(self, config):
|
| 802 |
+
super().__init__(config)
|
| 803 |
+
|
| 804 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 805 |
+
self.cls = BertOnlyMLMHead(config)
|
| 806 |
+
|
| 807 |
+
self.init_weights()
|
| 808 |
+
|
| 809 |
+
def get_output_embeddings(self):
|
| 810 |
+
return self.cls.predictions.decoder
|
| 811 |
+
|
| 812 |
+
def set_output_embeddings(self, new_embeddings):
|
| 813 |
+
self.cls.predictions.decoder = new_embeddings
|
| 814 |
+
|
| 815 |
+
def forward(
|
| 816 |
+
self,
|
| 817 |
+
input_ids=None,
|
| 818 |
+
attention_mask=None,
|
| 819 |
+
position_ids=None,
|
| 820 |
+
head_mask=None,
|
| 821 |
+
inputs_embeds=None,
|
| 822 |
+
encoder_hidden_states=None,
|
| 823 |
+
encoder_attention_mask=None,
|
| 824 |
+
labels=None,
|
| 825 |
+
past_key_values=None,
|
| 826 |
+
use_cache=None,
|
| 827 |
+
output_attentions=None,
|
| 828 |
+
output_hidden_states=None,
|
| 829 |
+
return_dict=None,
|
| 830 |
+
return_logits=False,
|
| 831 |
+
is_decoder=True,
|
| 832 |
+
reduction='mean',
|
| 833 |
+
mode='multimodal',
|
| 834 |
+
):
|
| 835 |
+
r"""
|
| 836 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
| 837 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 838 |
+
the model is configured as a decoder.
|
| 839 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 840 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 841 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
| 842 |
+
- 1 for tokens that are **not masked**,
|
| 843 |
+
- 0 for tokens that are **masked**.
|
| 844 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 845 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
| 846 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
| 847 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
| 848 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 849 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 850 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
| 851 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
| 852 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
| 853 |
+
use_cache (:obj:`bool`, `optional`):
|
| 854 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
| 855 |
+
decoding (see :obj:`past_key_values`).
|
| 856 |
+
Returns:
|
| 857 |
+
Example::
|
| 858 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
| 859 |
+
>>> import torch
|
| 860 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
| 861 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
| 862 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
| 863 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 864 |
+
>>> outputs = model(**inputs)
|
| 865 |
+
>>> prediction_logits = outputs.logits
|
| 866 |
+
"""
|
| 867 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 868 |
+
if labels is not None:
|
| 869 |
+
use_cache = False
|
| 870 |
+
|
| 871 |
+
outputs = self.bert(
|
| 872 |
+
input_ids,
|
| 873 |
+
attention_mask=attention_mask,
|
| 874 |
+
position_ids=position_ids,
|
| 875 |
+
head_mask=head_mask,
|
| 876 |
+
inputs_embeds=inputs_embeds,
|
| 877 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 878 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 879 |
+
past_key_values=past_key_values,
|
| 880 |
+
use_cache=use_cache,
|
| 881 |
+
output_attentions=output_attentions,
|
| 882 |
+
output_hidden_states=output_hidden_states,
|
| 883 |
+
return_dict=return_dict,
|
| 884 |
+
is_decoder=is_decoder,
|
| 885 |
+
mode=mode,
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
sequence_output = outputs[0]
|
| 889 |
+
prediction_scores = self.cls(sequence_output)
|
| 890 |
+
|
| 891 |
+
if return_logits:
|
| 892 |
+
return prediction_scores[:, :-1, :].contiguous()
|
| 893 |
+
|
| 894 |
+
lm_loss = None
|
| 895 |
+
if labels is not None:
|
| 896 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 897 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
| 898 |
+
labels = labels[:, 1:].contiguous()
|
| 899 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
| 900 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 901 |
+
if reduction=='none':
|
| 902 |
+
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
| 903 |
+
|
| 904 |
+
if not return_dict:
|
| 905 |
+
output = (prediction_scores,) + outputs[2:]
|
| 906 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 907 |
+
|
| 908 |
+
return CausalLMOutputWithCrossAttentions(
|
| 909 |
+
loss=lm_loss,
|
| 910 |
+
logits=prediction_scores,
|
| 911 |
+
past_key_values=outputs.past_key_values,
|
| 912 |
+
hidden_states=outputs.hidden_states,
|
| 913 |
+
attentions=outputs.attentions,
|
| 914 |
+
cross_attentions=outputs.cross_attentions,
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
| 918 |
+
input_shape = input_ids.shape
|
| 919 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
| 920 |
+
if attention_mask is None:
|
| 921 |
+
attention_mask = input_ids.new_ones(input_shape)
|
| 922 |
+
|
| 923 |
+
# cut decoder_input_ids if past is used
|
| 924 |
+
if past is not None:
|
| 925 |
+
input_ids = input_ids[:, -1:]
|
| 926 |
+
|
| 927 |
+
return {
|
| 928 |
+
"input_ids": input_ids,
|
| 929 |
+
"attention_mask": attention_mask,
|
| 930 |
+
"past_key_values": past,
|
| 931 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
| 932 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
| 933 |
+
"is_decoder": True,
|
| 934 |
+
}
|
| 935 |
+
|
| 936 |
+
def _reorder_cache(self, past, beam_idx):
|
| 937 |
+
reordered_past = ()
|
| 938 |
+
for layer_past in past:
|
| 939 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 940 |
+
return reordered_past
|
Model/clip/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .clip import *
|
Model/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
Model/clip/clip.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import urllib
|
| 4 |
+
import warnings
|
| 5 |
+
from typing import Any, Union, List
|
| 6 |
+
from pkg_resources import packaging
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
from .model import build_model
|
| 14 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
from torchvision.transforms import InterpolationMode
|
| 18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
| 19 |
+
except ImportError:
|
| 20 |
+
BICUBIC = Image.BICUBIC
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
| 24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
| 28 |
+
_tokenizer = _Tokenizer()
|
| 29 |
+
|
| 30 |
+
_MODELS = {
|
| 31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
| 32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
| 33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
| 34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
| 35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
| 36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
| 37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
| 38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
| 39 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def _download(url: str, root: str):
|
| 44 |
+
os.makedirs(root, exist_ok=True)
|
| 45 |
+
filename = os.path.basename(url)
|
| 46 |
+
|
| 47 |
+
expected_sha256 = url.split("/")[-2]
|
| 48 |
+
download_target = os.path.join(root, filename)
|
| 49 |
+
|
| 50 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 51 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 52 |
+
|
| 53 |
+
if os.path.isfile(download_target):
|
| 54 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
| 55 |
+
return download_target
|
| 56 |
+
else:
|
| 57 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
| 58 |
+
|
| 59 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 60 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
| 61 |
+
while True:
|
| 62 |
+
buffer = source.read(8192)
|
| 63 |
+
if not buffer:
|
| 64 |
+
break
|
| 65 |
+
|
| 66 |
+
output.write(buffer)
|
| 67 |
+
loop.update(len(buffer))
|
| 68 |
+
|
| 69 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
| 70 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
| 71 |
+
|
| 72 |
+
return download_target
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _convert_image_to_rgb(image):
|
| 76 |
+
return image.convert("RGB")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _transform(n_px):
|
| 80 |
+
return Compose([
|
| 81 |
+
Resize(n_px, interpolation=BICUBIC),
|
| 82 |
+
CenterCrop(n_px),
|
| 83 |
+
_convert_image_to_rgb,
|
| 84 |
+
ToTensor(),
|
| 85 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
| 86 |
+
])
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def available_models() -> List[str]:
|
| 90 |
+
"""Returns the names of available CLIP models"""
|
| 91 |
+
return list(_MODELS.keys())
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
| 95 |
+
"""Load a CLIP model
|
| 96 |
+
|
| 97 |
+
Parameters
|
| 98 |
+
----------
|
| 99 |
+
name : str
|
| 100 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
| 101 |
+
|
| 102 |
+
device : Union[str, torch.device]
|
| 103 |
+
The device to put the loaded model
|
| 104 |
+
|
| 105 |
+
jit : bool
|
| 106 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
| 107 |
+
|
| 108 |
+
download_root: str
|
| 109 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
| 110 |
+
|
| 111 |
+
Returns
|
| 112 |
+
-------
|
| 113 |
+
model : torch.nn.Module
|
| 114 |
+
The CLIP model
|
| 115 |
+
|
| 116 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
| 117 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
| 118 |
+
"""
|
| 119 |
+
if name in _MODELS:
|
| 120 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
| 121 |
+
elif os.path.isfile(name):
|
| 122 |
+
model_path = name
|
| 123 |
+
else:
|
| 124 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
| 125 |
+
|
| 126 |
+
with open(model_path, 'rb') as opened_file:
|
| 127 |
+
try:
|
| 128 |
+
# loading JIT archive
|
| 129 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
| 130 |
+
state_dict = None
|
| 131 |
+
except RuntimeError:
|
| 132 |
+
# loading saved state dict
|
| 133 |
+
if jit:
|
| 134 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
| 135 |
+
jit = False
|
| 136 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
| 137 |
+
|
| 138 |
+
if not jit:
|
| 139 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
| 140 |
+
if str(device) == "cpu":
|
| 141 |
+
model.float()
|
| 142 |
+
return model, _transform(model.visual.input_resolution)
|
| 143 |
+
|
| 144 |
+
# patch the device names
|
| 145 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
| 146 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
| 147 |
+
|
| 148 |
+
def patch_device(module):
|
| 149 |
+
try:
|
| 150 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 151 |
+
except RuntimeError:
|
| 152 |
+
graphs = []
|
| 153 |
+
|
| 154 |
+
if hasattr(module, "forward1"):
|
| 155 |
+
graphs.append(module.forward1.graph)
|
| 156 |
+
|
| 157 |
+
for graph in graphs:
|
| 158 |
+
for node in graph.findAllNodes("prim::Constant"):
|
| 159 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
| 160 |
+
node.copyAttributes(device_node)
|
| 161 |
+
|
| 162 |
+
model.apply(patch_device)
|
| 163 |
+
patch_device(model.encode_image)
|
| 164 |
+
patch_device(model.encode_text)
|
| 165 |
+
|
| 166 |
+
# patch dtype to float32 on CPU
|
| 167 |
+
if str(device) == "cpu":
|
| 168 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
| 169 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
| 170 |
+
float_node = float_input.node()
|
| 171 |
+
|
| 172 |
+
def patch_float(module):
|
| 173 |
+
try:
|
| 174 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 175 |
+
except RuntimeError:
|
| 176 |
+
graphs = []
|
| 177 |
+
|
| 178 |
+
if hasattr(module, "forward1"):
|
| 179 |
+
graphs.append(module.forward1.graph)
|
| 180 |
+
|
| 181 |
+
for graph in graphs:
|
| 182 |
+
for node in graph.findAllNodes("aten::to"):
|
| 183 |
+
inputs = list(node.inputs())
|
| 184 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
| 185 |
+
if inputs[i].node()["value"] == 5:
|
| 186 |
+
inputs[i].node().copyAttributes(float_node)
|
| 187 |
+
|
| 188 |
+
model.apply(patch_float)
|
| 189 |
+
patch_float(model.encode_image)
|
| 190 |
+
patch_float(model.encode_text)
|
| 191 |
+
|
| 192 |
+
model.float()
|
| 193 |
+
|
| 194 |
+
return model, _transform(model.input_resolution.item())
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
| 198 |
+
"""
|
| 199 |
+
Returns the tokenized representation of given input string(s)
|
| 200 |
+
|
| 201 |
+
Parameters
|
| 202 |
+
----------
|
| 203 |
+
texts : Union[str, List[str]]
|
| 204 |
+
An input string or a list of input strings to tokenize
|
| 205 |
+
|
| 206 |
+
context_length : int
|
| 207 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 208 |
+
|
| 209 |
+
truncate: bool
|
| 210 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
| 211 |
+
|
| 212 |
+
Returns
|
| 213 |
+
-------
|
| 214 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
| 215 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
| 216 |
+
"""
|
| 217 |
+
if isinstance(texts, str):
|
| 218 |
+
texts = [texts]
|
| 219 |
+
|
| 220 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
| 221 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
| 222 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
| 223 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
| 224 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 225 |
+
else:
|
| 226 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
| 227 |
+
|
| 228 |
+
for i, tokens in enumerate(all_tokens):
|
| 229 |
+
if len(tokens) > context_length:
|
| 230 |
+
if truncate:
|
| 231 |
+
tokens = tokens[:context_length]
|
| 232 |
+
tokens[-1] = eot_token
|
| 233 |
+
else:
|
| 234 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
| 235 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 236 |
+
|
| 237 |
+
return result
|
Model/clip/model.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch import nn
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Bottleneck(nn.Module):
|
| 11 |
+
expansion = 4
|
| 12 |
+
|
| 13 |
+
def __init__(self, inplanes, planes, stride=1):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
| 17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
| 18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 20 |
+
|
| 21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
| 22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 24 |
+
|
| 25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
| 26 |
+
|
| 27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
| 28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 30 |
+
|
| 31 |
+
self.downsample = None
|
| 32 |
+
self.stride = stride
|
| 33 |
+
|
| 34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
| 35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
| 36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
| 37 |
+
("-1", nn.AvgPool2d(stride)),
|
| 38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
| 39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
| 40 |
+
]))
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor):
|
| 43 |
+
identity = x
|
| 44 |
+
|
| 45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
| 46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
| 47 |
+
out = self.avgpool(out)
|
| 48 |
+
out = self.bn3(self.conv3(out))
|
| 49 |
+
|
| 50 |
+
if self.downsample is not None:
|
| 51 |
+
identity = self.downsample(x)
|
| 52 |
+
|
| 53 |
+
out += identity
|
| 54 |
+
out = self.relu3(out)
|
| 55 |
+
return out
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AttentionPool2d(nn.Module):
|
| 59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
| 62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 66 |
+
self.num_heads = num_heads
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 72 |
+
x, _ = F.multi_head_attention_forward(
|
| 73 |
+
query=x, key=x, value=x,
|
| 74 |
+
embed_dim_to_check=x.shape[-1],
|
| 75 |
+
num_heads=self.num_heads,
|
| 76 |
+
q_proj_weight=self.q_proj.weight,
|
| 77 |
+
k_proj_weight=self.k_proj.weight,
|
| 78 |
+
v_proj_weight=self.v_proj.weight,
|
| 79 |
+
in_proj_weight=None,
|
| 80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 81 |
+
bias_k=None,
|
| 82 |
+
bias_v=None,
|
| 83 |
+
add_zero_attn=False,
|
| 84 |
+
dropout_p=0,
|
| 85 |
+
out_proj_weight=self.c_proj.weight,
|
| 86 |
+
out_proj_bias=self.c_proj.bias,
|
| 87 |
+
use_separate_proj_weight=True,
|
| 88 |
+
training=self.training,
|
| 89 |
+
need_weights=False
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return x[0]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class ModifiedResNet(nn.Module):
|
| 96 |
+
"""
|
| 97 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
| 98 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
| 99 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
| 100 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.output_dim = output_dim
|
| 106 |
+
self.input_resolution = input_resolution
|
| 107 |
+
|
| 108 |
+
# the 3-layer stem
|
| 109 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
| 110 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
| 111 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 112 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
| 113 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
| 114 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 115 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
| 116 |
+
self.bn3 = nn.BatchNorm2d(width)
|
| 117 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 118 |
+
self.avgpool = nn.AvgPool2d(2)
|
| 119 |
+
|
| 120 |
+
# residual layers
|
| 121 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
| 122 |
+
self.layer1 = self._make_layer(width, layers[0])
|
| 123 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
| 124 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
| 125 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
| 126 |
+
|
| 127 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
| 128 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
| 129 |
+
|
| 130 |
+
def _make_layer(self, planes, blocks, stride=1):
|
| 131 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
| 132 |
+
|
| 133 |
+
self._inplanes = planes * Bottleneck.expansion
|
| 134 |
+
for _ in range(1, blocks):
|
| 135 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
| 136 |
+
|
| 137 |
+
return nn.Sequential(*layers)
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
def stem(x):
|
| 141 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
| 142 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
| 143 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
| 144 |
+
x = self.avgpool(x)
|
| 145 |
+
return x
|
| 146 |
+
|
| 147 |
+
x = x.type(self.conv1.weight.dtype)
|
| 148 |
+
x = stem(x)
|
| 149 |
+
x = self.layer1(x)
|
| 150 |
+
x = self.layer2(x)
|
| 151 |
+
x = self.layer3(x)
|
| 152 |
+
x = self.layer4(x)
|
| 153 |
+
x = self.attnpool(x)
|
| 154 |
+
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class LayerNorm(nn.LayerNorm):
|
| 159 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
| 160 |
+
|
| 161 |
+
def forward(self, x: torch.Tensor):
|
| 162 |
+
orig_type = x.dtype
|
| 163 |
+
ret = super().forward(x.type(torch.float32))
|
| 164 |
+
return ret.type(orig_type)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class QuickGELU(nn.Module):
|
| 168 |
+
def forward(self, x: torch.Tensor):
|
| 169 |
+
return x * torch.sigmoid(1.702 * x)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class ResidualAttentionBlock(nn.Module):
|
| 173 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
| 174 |
+
super().__init__()
|
| 175 |
+
|
| 176 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 177 |
+
self.ln_1 = LayerNorm(d_model)
|
| 178 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 179 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
| 180 |
+
("gelu", QuickGELU()),
|
| 181 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
| 182 |
+
]))
|
| 183 |
+
self.ln_2 = LayerNorm(d_model)
|
| 184 |
+
self.attn_mask = attn_mask
|
| 185 |
+
|
| 186 |
+
def attention(self, x: torch.Tensor):
|
| 187 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
| 188 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
| 189 |
+
|
| 190 |
+
def forward(self, x: torch.Tensor):
|
| 191 |
+
x = x + self.attention(self.ln_1(x))
|
| 192 |
+
x = x + self.mlp(self.ln_2(x))
|
| 193 |
+
return x
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class Transformer(nn.Module):
|
| 197 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.width = width
|
| 200 |
+
self.layers = layers
|
| 201 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
| 202 |
+
|
| 203 |
+
def forward(self, x: torch.Tensor):
|
| 204 |
+
return self.resblocks(x)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class VisionTransformer(nn.Module):
|
| 208 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
| 209 |
+
super().__init__()
|
| 210 |
+
self.input_resolution = input_resolution
|
| 211 |
+
self.output_dim = output_dim
|
| 212 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
| 213 |
+
|
| 214 |
+
scale = width ** -0.5
|
| 215 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 216 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
| 217 |
+
self.ln_pre = LayerNorm(width)
|
| 218 |
+
|
| 219 |
+
self.transformer = Transformer(width, layers, heads)
|
| 220 |
+
|
| 221 |
+
self.ln_post = LayerNorm(width)
|
| 222 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
| 223 |
+
|
| 224 |
+
def forward(self, x: torch.Tensor):
|
| 225 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 226 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 227 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 228 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
| 229 |
+
x = x + self.positional_embedding.to(x.dtype)
|
| 230 |
+
x = self.ln_pre(x)
|
| 231 |
+
|
| 232 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 233 |
+
x = self.transformer(x)
|
| 234 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 235 |
+
|
| 236 |
+
# x = self.ln_post(x[:, 0, :])
|
| 237 |
+
#
|
| 238 |
+
# if self.proj is not None:
|
| 239 |
+
# x = x @ self.proj
|
| 240 |
+
|
| 241 |
+
return x
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class CLIP(nn.Module):
|
| 245 |
+
def __init__(self,
|
| 246 |
+
embed_dim: int,
|
| 247 |
+
# vision
|
| 248 |
+
image_resolution: int,
|
| 249 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 250 |
+
vision_width: int,
|
| 251 |
+
vision_patch_size: int,
|
| 252 |
+
# text
|
| 253 |
+
context_length: int,
|
| 254 |
+
vocab_size: int,
|
| 255 |
+
transformer_width: int,
|
| 256 |
+
transformer_heads: int,
|
| 257 |
+
transformer_layers: int
|
| 258 |
+
):
|
| 259 |
+
super().__init__()
|
| 260 |
+
|
| 261 |
+
self.context_length = context_length
|
| 262 |
+
|
| 263 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 264 |
+
vision_heads = vision_width * 32 // 64
|
| 265 |
+
self.visual = ModifiedResNet(
|
| 266 |
+
layers=vision_layers,
|
| 267 |
+
output_dim=embed_dim,
|
| 268 |
+
heads=vision_heads,
|
| 269 |
+
input_resolution=image_resolution,
|
| 270 |
+
width=vision_width
|
| 271 |
+
)
|
| 272 |
+
else:
|
| 273 |
+
vision_heads = vision_width // 64
|
| 274 |
+
self.visual = VisionTransformer(
|
| 275 |
+
input_resolution=image_resolution,
|
| 276 |
+
patch_size=vision_patch_size,
|
| 277 |
+
width=vision_width,
|
| 278 |
+
layers=vision_layers,
|
| 279 |
+
heads=vision_heads,
|
| 280 |
+
output_dim=embed_dim
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
self.transformer = Transformer(
|
| 284 |
+
width=transformer_width,
|
| 285 |
+
layers=transformer_layers,
|
| 286 |
+
heads=transformer_heads,
|
| 287 |
+
attn_mask=self.build_attention_mask()
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
self.vocab_size = vocab_size
|
| 291 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 292 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
| 293 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 294 |
+
|
| 295 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
| 296 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 297 |
+
|
| 298 |
+
self.initialize_parameters()
|
| 299 |
+
|
| 300 |
+
def initialize_parameters(self):
|
| 301 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 302 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 303 |
+
|
| 304 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 305 |
+
if self.visual.attnpool is not None:
|
| 306 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
| 307 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 308 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 309 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 310 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 311 |
+
|
| 312 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
| 313 |
+
for name, param in resnet_block.named_parameters():
|
| 314 |
+
if name.endswith("bn3.weight"):
|
| 315 |
+
nn.init.zeros_(param)
|
| 316 |
+
|
| 317 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 318 |
+
attn_std = self.transformer.width ** -0.5
|
| 319 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 320 |
+
for block in self.transformer.resblocks:
|
| 321 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 322 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 323 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 324 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 325 |
+
|
| 326 |
+
if self.text_projection is not None:
|
| 327 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 328 |
+
|
| 329 |
+
def build_attention_mask(self):
|
| 330 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 331 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 332 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 333 |
+
mask.fill_(float("-inf"))
|
| 334 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 335 |
+
return mask
|
| 336 |
+
|
| 337 |
+
@property
|
| 338 |
+
def dtype(self):
|
| 339 |
+
return self.visual.conv1.weight.dtype
|
| 340 |
+
|
| 341 |
+
def encode_image(self, image):
|
| 342 |
+
return self.visual(image.type(self.dtype))
|
| 343 |
+
|
| 344 |
+
def encode_text(self, text):
|
| 345 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
| 346 |
+
|
| 347 |
+
x = x + self.positional_embedding.type(self.dtype)
|
| 348 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 349 |
+
x = self.transformer(x)
|
| 350 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 351 |
+
x = self.ln_final(x).type(self.dtype)
|
| 352 |
+
|
| 353 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 354 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 355 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 356 |
+
|
| 357 |
+
return x
|
| 358 |
+
|
| 359 |
+
def forward(self, image, text):
|
| 360 |
+
image_features = self.encode_image(image)
|
| 361 |
+
text_features = self.encode_text(text)
|
| 362 |
+
|
| 363 |
+
# normalized features
|
| 364 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
| 365 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
| 366 |
+
|
| 367 |
+
# cosine similarity as logits
|
| 368 |
+
logit_scale = self.logit_scale.exp()
|
| 369 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 370 |
+
logits_per_text = logits_per_image.t()
|
| 371 |
+
|
| 372 |
+
# shape = [global_batch_size, global_batch_size]
|
| 373 |
+
return logits_per_image, logits_per_text
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def convert_weights(model: nn.Module):
|
| 377 |
+
"""Convert applicable model parameters to fp16"""
|
| 378 |
+
|
| 379 |
+
def _convert_weights_to_fp16(l):
|
| 380 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 381 |
+
l.weight.data = l.weight.data.half()
|
| 382 |
+
if l.bias is not None:
|
| 383 |
+
l.bias.data = l.bias.data.half()
|
| 384 |
+
|
| 385 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 386 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
| 387 |
+
tensor = getattr(l, attr)
|
| 388 |
+
if tensor is not None:
|
| 389 |
+
tensor.data = tensor.data.half()
|
| 390 |
+
|
| 391 |
+
for name in ["text_projection", "proj"]:
|
| 392 |
+
if hasattr(l, name):
|
| 393 |
+
attr = getattr(l, name)
|
| 394 |
+
if attr is not None:
|
| 395 |
+
attr.data = attr.data.half()
|
| 396 |
+
|
| 397 |
+
model.apply(_convert_weights_to_fp16)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def build_model(state_dict: dict):
|
| 401 |
+
vit = "visual.proj" in state_dict
|
| 402 |
+
|
| 403 |
+
if vit:
|
| 404 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 405 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
| 406 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 407 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 408 |
+
image_resolution = vision_patch_size * grid_size
|
| 409 |
+
else:
|
| 410 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
| 411 |
+
vision_layers = tuple(counts)
|
| 412 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 413 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 414 |
+
vision_patch_size = None
|
| 415 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
| 416 |
+
image_resolution = output_width * 32
|
| 417 |
+
|
| 418 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 419 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 420 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 421 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 422 |
+
transformer_heads = transformer_width // 64
|
| 423 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
| 424 |
+
|
| 425 |
+
model = CLIP(
|
| 426 |
+
embed_dim,
|
| 427 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
| 428 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 432 |
+
if key in state_dict:
|
| 433 |
+
del state_dict[key]
|
| 434 |
+
|
| 435 |
+
convert_weights(model)
|
| 436 |
+
model.load_state_dict(state_dict)
|
| 437 |
+
return model.eval()
|
Model/clip/simple_tokenizer.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import html
|
| 3 |
+
import os
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
import ftfy
|
| 7 |
+
import regex as re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@lru_cache()
|
| 11 |
+
def default_bpe():
|
| 12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@lru_cache()
|
| 16 |
+
def bytes_to_unicode():
|
| 17 |
+
"""
|
| 18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 19 |
+
The reversible bpe codes work on unicode strings.
|
| 20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 25 |
+
"""
|
| 26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 27 |
+
cs = bs[:]
|
| 28 |
+
n = 0
|
| 29 |
+
for b in range(2**8):
|
| 30 |
+
if b not in bs:
|
| 31 |
+
bs.append(b)
|
| 32 |
+
cs.append(2**8+n)
|
| 33 |
+
n += 1
|
| 34 |
+
cs = [chr(n) for n in cs]
|
| 35 |
+
return dict(zip(bs, cs))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_pairs(word):
|
| 39 |
+
"""Return set of symbol pairs in a word.
|
| 40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 41 |
+
"""
|
| 42 |
+
pairs = set()
|
| 43 |
+
prev_char = word[0]
|
| 44 |
+
for char in word[1:]:
|
| 45 |
+
pairs.add((prev_char, char))
|
| 46 |
+
prev_char = char
|
| 47 |
+
return pairs
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def basic_clean(text):
|
| 51 |
+
text = ftfy.fix_text(text)
|
| 52 |
+
text = html.unescape(html.unescape(text))
|
| 53 |
+
return text.strip()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def whitespace_clean(text):
|
| 57 |
+
text = re.sub(r'\s+', ' ', text)
|
| 58 |
+
text = text.strip()
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SimpleTokenizer(object):
|
| 63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
| 64 |
+
self.byte_encoder = bytes_to_unicode()
|
| 65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 67 |
+
merges = merges[1:49152-256-2+1]
|
| 68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 69 |
+
vocab = list(bytes_to_unicode().values())
|
| 70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 71 |
+
for merge in merges:
|
| 72 |
+
vocab.append(''.join(merge))
|
| 73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
| 74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
| 78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
| 79 |
+
|
| 80 |
+
def bpe(self, token):
|
| 81 |
+
if token in self.cache:
|
| 82 |
+
return self.cache[token]
|
| 83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 84 |
+
pairs = get_pairs(word)
|
| 85 |
+
|
| 86 |
+
if not pairs:
|
| 87 |
+
return token+'</w>'
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 91 |
+
if bigram not in self.bpe_ranks:
|
| 92 |
+
break
|
| 93 |
+
first, second = bigram
|
| 94 |
+
new_word = []
|
| 95 |
+
i = 0
|
| 96 |
+
while i < len(word):
|
| 97 |
+
try:
|
| 98 |
+
j = word.index(first, i)
|
| 99 |
+
new_word.extend(word[i:j])
|
| 100 |
+
i = j
|
| 101 |
+
except:
|
| 102 |
+
new_word.extend(word[i:])
|
| 103 |
+
break
|
| 104 |
+
|
| 105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 106 |
+
new_word.append(first+second)
|
| 107 |
+
i += 2
|
| 108 |
+
else:
|
| 109 |
+
new_word.append(word[i])
|
| 110 |
+
i += 1
|
| 111 |
+
new_word = tuple(new_word)
|
| 112 |
+
word = new_word
|
| 113 |
+
if len(word) == 1:
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
pairs = get_pairs(word)
|
| 117 |
+
word = ' '.join(word)
|
| 118 |
+
self.cache[token] = word
|
| 119 |
+
return word
|
| 120 |
+
|
| 121 |
+
def encode(self, text):
|
| 122 |
+
bpe_tokens = []
|
| 123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 124 |
+
for token in re.findall(self.pat, text):
|
| 125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 127 |
+
return bpe_tokens
|
| 128 |
+
|
| 129 |
+
def decode(self, tokens):
|
| 130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 132 |
+
return text
|
Model/trcaptionnet.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from transformers import BertTokenizer
|
| 8 |
+
|
| 9 |
+
from Model import clip
|
| 10 |
+
from Model.bert import BertLMHeadModel, BertConfig
|
| 11 |
+
from Model.clip.model import Transformer
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Proj(nn.Module):
|
| 15 |
+
|
| 16 |
+
def __init__(self, encoder_output_size, num_head=16):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.encoder_output_size = encoder_output_size
|
| 19 |
+
|
| 20 |
+
self.transformer = Transformer(encoder_output_size, 1, num_head)
|
| 21 |
+
self.linear = nn.Linear(encoder_output_size, 768)
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 26 |
+
x = self.transformer(x)
|
| 27 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 28 |
+
return self.linear(x)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class TRCaptionNet(nn.Module):
|
| 32 |
+
def __init__(self, config: dict):
|
| 33 |
+
super().__init__()
|
| 34 |
+
# parameters
|
| 35 |
+
self.max_length = config["max_length"]
|
| 36 |
+
self.proj_flag = config["proj"]
|
| 37 |
+
assert type(self.proj_flag) == bool
|
| 38 |
+
self.proj_num_head = config["proj_num_head"]
|
| 39 |
+
|
| 40 |
+
# vision encoder
|
| 41 |
+
self.vision_encoder, preprocess = clip.load(config["clip"], jit=False)
|
| 42 |
+
self.vision_encoder.eval()
|
| 43 |
+
self.vision_encoder = self.vision_encoder.visual
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
dummy_input_image = preprocess(Image.fromarray(numpy.zeros((512, 512, 3), dtype=numpy.uint8))).to(next(self.parameters()).device).half()
|
| 46 |
+
encoder_output_size = self.vision_encoder(dummy_input_image.unsqueeze(0)).shape[-1]
|
| 47 |
+
self.vision_encoder = self.vision_encoder.float()
|
| 48 |
+
|
| 49 |
+
# language decoder
|
| 50 |
+
if not os.path.isfile(config["bert"]):
|
| 51 |
+
self.language_decoder = BertLMHeadModel.from_pretrained(config["bert"],
|
| 52 |
+
is_decoder=True,
|
| 53 |
+
add_cross_attention=True)
|
| 54 |
+
self.tokenizer = BertTokenizer.from_pretrained(config["bert"])
|
| 55 |
+
else:
|
| 56 |
+
med_config = BertConfig.from_json_file(config["bert"])
|
| 57 |
+
self.language_decoder = BertLMHeadModel(config=med_config)
|
| 58 |
+
self.tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
| 59 |
+
|
| 60 |
+
# proj
|
| 61 |
+
if self.proj_flag:
|
| 62 |
+
if self.proj_num_head is None:
|
| 63 |
+
self.proj = nn.Linear(encoder_output_size, 768)
|
| 64 |
+
else:
|
| 65 |
+
self.proj = Proj(encoder_output_size, self.proj_num_head)
|
| 66 |
+
else:
|
| 67 |
+
self.proj = None
|
| 68 |
+
return
|
| 69 |
+
|
| 70 |
+
@torch.no_grad()
|
| 71 |
+
def generate(self, images, max_length: int = None, min_length: int = 12, num_beams: int = 3,
|
| 72 |
+
repetition_penalty: float = 1.1):
|
| 73 |
+
image_embeds = self.vision_encoder(images)
|
| 74 |
+
|
| 75 |
+
if self.proj is not None:
|
| 76 |
+
image_embeds = self.proj(image_embeds)
|
| 77 |
+
|
| 78 |
+
image_atts = torch.ones(image_embeds.shape[:-1], dtype=torch.long).to(images.device)
|
| 79 |
+
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask": image_atts}
|
| 80 |
+
|
| 81 |
+
input_ids = torch.ones((image_embeds.shape[0], 1), device=images.device, dtype=torch.long)
|
| 82 |
+
input_ids *= 2
|
| 83 |
+
|
| 84 |
+
outputs = self.language_decoder.generate(input_ids=input_ids,
|
| 85 |
+
max_length=self.max_length if max_length is None else max_length,
|
| 86 |
+
min_length=min_length,
|
| 87 |
+
num_beams=num_beams,
|
| 88 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
| 89 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 90 |
+
repetition_penalty=repetition_penalty,
|
| 91 |
+
**model_kwargs)
|
| 92 |
+
|
| 93 |
+
captions = [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
| 94 |
+
return captions
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def test():
|
| 98 |
+
model = TRCaptionNet({
|
| 99 |
+
"max_length": 35,
|
| 100 |
+
"clip": "ViT-B/32",
|
| 101 |
+
"bert": "dbmdz/bert-base-turkish-cased"
|
| 102 |
+
})
|
| 103 |
+
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
if __name__ == '__main__':
|
| 108 |
+
test()
|
README.md
CHANGED
|
@@ -1,13 +1,105 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !Paper! TRCaptionNet: A novel and accurate deep Turkish image captioning model with vision transformer based image encoders and deep linguistic text decoders
|
| 2 |
+
|
| 3 |
+
<font size='3'> <p align="center">
|
| 4 |
+
<a href='https://scholar.google.com/citations?user=sl1KrkYAAAAJ&hl=tr'> Serdar Yıldız* </a>
|
| 5 |
+
<a href='https://scholar.google.com/citations?user=4_OxlcsAAAAJ&hl=tr'> Abbas Memiş </a>
|
| 6 |
+
<a href='https://scholar.google.com/citations?user=DaCI6_YAAAAJ&hl=tr'> Songül Varlı </a>
|
| 7 |
+
</p></font>
|
| 8 |
+
|
| 9 |
+
<p align="center">
|
| 10 |
+
<br />
|
| 11 |
+
<br />
|
| 12 |
+
<a href='https://journals.tubitak.gov.tr/elektrik'><img src='https://img.shields.io/badge/Paper-TUBITAK-red'></a>
|
| 13 |
+
<a href='https://huggingface.co/spaces/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
|
| 14 |
+
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
|
| 15 |
+
</p>
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Abstract
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## Installation
|
| 28 |
+
|
| 29 |
+
This project was developed on `torch 2.0.0 CUDA 11.8` and `Python 3.10`.
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
git clone https://github.com/serdaryildiz/TRCaptionNet.git
|
| 33 |
+
python3.10 -m venv venv
|
| 34 |
+
source venv/bin/activate
|
| 35 |
+
pip install -r requirements.txt
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
## Dataset
|
| 39 |
+
|
| 40 |
+
For the COCO dataset, please visit the [TurkishCaptionSet-COCO](https://github.com/serdaryildiz/TurkishCaptionSet-COCO) repository.
|
| 41 |
+
|
| 42 |
+
For the Flickr30k dataset : [Flicker30k-Turkish](https://drive.google.com/)
|
| 43 |
+
|
| 44 |
+
## Checkpoint
|
| 45 |
+
|
| 46 |
+
### COCO-Test
|
| 47 |
+
|
| 48 |
+
| Model | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-5 | METEOR | ROUGE-L | CIDEr |
|
| 49 |
+
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|---------|--------|
|
| 50 |
+
| **CLIP ViT-B/16 + (no pretrain)** | 0.5069 | 0.3438 | 0.2190 | 0.1416 | 0.2221 | 0.4127 | 0.4934 |
|
| 51 |
+
| **CLIP ViT-B/32 + (no pretrain)** | 0.4795 | 0.3220 | 0.2056 | 0.1328 | 0.2157 | 0.4065 | 0.4512 |
|
| 52 |
+
| **CLIP ViT-L/14 + (no pretrain)** | 0.5262 | 0.3643 | 0.2367 | 0.1534 | 0.2290 | 0.4296 | 0.5209 |
|
| 53 |
+
| **CLIP ViT-L/14@336px + (no pretrain)** | 0.5325 | 0.3693 | 0.2376 | 0.1528 | 0.2338 | 0.4387 | 0.5288 |
|
| 54 |
+
| **ViT-B/16 + BERTurk** | 0.5572 | 0.3945 | 0.2670 | 0.1814 | 0.2459 | 0.4499 | 0.6146 |
|
| 55 |
+
| **CLIP ViT-B/16 + (BERTurk)** | 0.5412 | 0.3802 | 0.2555 | 0.1715 | 0.2387 | 0.4419 | 0.5848 |
|
| 56 |
+
| [**CLIP ViT-L/14 + (BERTurk)**](https://drive.google.com/u/0/uc?id=14Ll1PIQhsMSypHT34Rt9voz_zaAf4Xh9&export=download&confirm=t&uuid=9b4bf589-d438-4b4f-a37c-fc34b0a63a5d&at=AB6BwCAY8xK0EZiPGv2YT7isL8pG:1697575816291) | 0.5761 | 0.4124 | 0.2803 | 0.1905 | 0.2523 | 0.4609 | 0.6437 |
|
| 57 |
+
| **CLIP ViT-L/14@336px + (BERTurk)** | 0.4639 | 0.3198 | 0.2077 | 0.1346 | 0.2276 | 0.4190 | 0.4971 |
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
### Flickr-Test
|
| 61 |
+
|
| 62 |
+
| Model | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-5 | METEOR | ROUGE-L | CIDEr |
|
| 63 |
+
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|---------|--------|
|
| 64 |
+
| **CLIP ViT-B/16 + (no pretrain)** | 0.4754 | 0.2980 | 0.1801 | 0.1046 | 0.1902 | 0.3732 | 0.2907 |
|
| 65 |
+
| **CLIP ViT-B/32 + (no pretrain)** | 0.4581 | 0.2866 | 0.1742 | 0.1014 | 0.1855 | 0.3754 | 0.2659 |
|
| 66 |
+
| **CLIP ViT-L/14 + (no pretrain)** | 0.5186 | 0.3407 | 0.2184 | 0.1346 | 0.2045 | 0.4058 | 0.3507 |
|
| 67 |
+
| **CLIP ViT-L/14@336px + (no pretrain)** | 0.5259 | 0.3525 | 0.2249 | 0.1334 | 0.2157 | 0.4237 | 0.3808 |
|
| 68 |
+
| **ViT-B/16 + BERTurk** | 0.5400 | 0.3742 | 0.2533 | 0.1677 | 0.2232 | 0.4324 | 0.4636 |
|
| 69 |
+
| **CLIP ViT-B/16 + (BERTurk)** | 0.5182 | 0.3523 | 0.2348 | 0.1532 | 0.2105 | 0.4079 | 0.4010 |
|
| 70 |
+
| [**CLIP ViT-L/14 + (BERTurk)**](https://drive.google.com/u/0/uc?id=14Ll1PIQhsMSypHT34Rt9voz_zaAf4Xh9&export=download&confirm=t&uuid=9b4bf589-d438-4b4f-a37c-fc34b0a63a5d&at=AB6BwCAY8xK0EZiPGv2YT7isL8pG:1697575816291) | 0.5713 | 0.4056 | 0.2789 | 0.1843 | 0.2330 | 0.4491 | 0.5154 |
|
| 71 |
+
| **CLIP ViT-L/14@336px + (BERTurk)** | 0.4548 | 0.3039 | 0.1937 | 0.1179 | 0.2056 | 0.3966 | 0.3550 |
|
| 72 |
+
|
| 73 |
+
## Demo
|
| 74 |
+
to run demo for images:
|
| 75 |
+
|
| 76 |
+
python demo.py --model-ckpt ./checkpoints/TRCaptionNet_L14_berturk.pth --input-dir ./images/ --device cuda:0
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
## TODO
|
| 80 |
+
|
| 81 |
+
- ??
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
## Citation
|
| 86 |
+
|
| 87 |
+
If you find our work helpful, please cite the following paper:
|
| 88 |
+
|
| 89 |
+
```
|
| 90 |
+
@ARTICLE{,
|
| 91 |
+
author={Serdar Yıldız and Abbas Memiş and Songül Varlı},
|
| 92 |
+
journal={},
|
| 93 |
+
title={},
|
| 94 |
+
year={},
|
| 95 |
+
volume={},
|
| 96 |
+
number={},
|
| 97 |
+
pages={},
|
| 98 |
+
doi={}
|
| 99 |
+
}
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### Thanks to awesome works
|
| 103 |
+
|
| 104 |
+
- [BLIP](https://github.com/salesforce/BLIP)
|
| 105 |
+
- [ClipCap](https://github.com/rmokady/CLIP_prefix_caption)
|
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
|
| 3 |
+
import gdown
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from Model import TRCaptionNet, clip_transform
|
| 8 |
+
|
| 9 |
+
model_ckpt = "./checkpoints/TRCaptionNet_L14_berturk.pth"
|
| 10 |
+
if not os.path.exists(model_ckpt):
|
| 11 |
+
os.makedirs("./checkpoints/", exist_ok=True)
|
| 12 |
+
url = 'https://drive.google.com/u/0/uc?id=14Ll1PIQhsMSypHT34Rt9voz_zaAf4Xh9&export=download&confirm=t&uuid=9b4bf589-d438-4b4f-a37c-fc34b0a63a5d&at=AB6BwCAY8xK0EZiPGv2YT7isL8pG:1697575816291'
|
| 13 |
+
gdown.download(url, model_ckpt, quiet=False)
|
| 14 |
+
|
| 15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 16 |
+
# device = "cpu"
|
| 17 |
+
|
| 18 |
+
preprocess = clip_transform(224)
|
| 19 |
+
model = TRCaptionNet({
|
| 20 |
+
"max_length": 35,
|
| 21 |
+
"clip": "ViT-L/14",
|
| 22 |
+
"bert": "dbmdz/bert-base-turkish-cased",
|
| 23 |
+
"proj": True,
|
| 24 |
+
"proj_num_head": 16
|
| 25 |
+
})
|
| 26 |
+
model.load_state_dict(torch.load(model_ckpt, map_location=device)["model"], strict=True)
|
| 27 |
+
model = model.to(device)
|
| 28 |
+
model.eval()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def inference(raw_image, min_length, repetition_penalty):
|
| 32 |
+
batch = preprocess(raw_image).unsqueeze(0).to(device)
|
| 33 |
+
caption = model.generate(batch, min_length=min_length, repetition_penalty=repetition_penalty)[0]
|
| 34 |
+
return caption
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
inputs = [gr.Image(type='pil', interactive=False,),
|
| 38 |
+
gr.Slider(minimum=6, maximum=22, value=11, label="MINIMUM CAPTION LENGTH", step=1),
|
| 39 |
+
gr.Slider(minimum=1, maximum=2, value=1.6, label="REPETITION PENALTY")]
|
| 40 |
+
outputs = gr.components.Textbox(label="Caption")
|
| 41 |
+
title = "TRCaptionNet"
|
| 42 |
+
paper_link = ""
|
| 43 |
+
github_link = "https://github.com/serdaryildiz/TRCaptionNet"
|
| 44 |
+
description = f"<p style='text-align: center'><a href='{github_link}' target='_blank'>TRCaptionNet</a> : A novel and accurate deep Turkish image captioning model with vision transformer based image encoders and deep linguistic text decoders"
|
| 45 |
+
examples = [
|
| 46 |
+
["images/test1.jpg"],
|
| 47 |
+
["images/test2.jpg"],
|
| 48 |
+
["images/test3.jpg"],
|
| 49 |
+
["images/test4.jpg"]
|
| 50 |
+
]
|
| 51 |
+
article = f"<p style='text-align: center'><a href='{paper_link}' target='_blank'>Paper</a> | <a href='{github_link}' target='_blank'>Github Repo</a></p>"
|
| 52 |
+
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
|
| 53 |
+
|
| 54 |
+
iface = gr.Interface(fn=inference,
|
| 55 |
+
inputs=inputs,
|
| 56 |
+
outputs=outputs,
|
| 57 |
+
title=title,
|
| 58 |
+
description=description,
|
| 59 |
+
examples=examples,
|
| 60 |
+
article=article,
|
| 61 |
+
css=css)
|
| 62 |
+
iface.launch()
|
demo.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import glob
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
from Model import TRCaptionNet, clip_transform
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def demo(opt):
|
| 14 |
+
preprocess = clip_transform(224)
|
| 15 |
+
model = TRCaptionNet({
|
| 16 |
+
"max_length": 35,
|
| 17 |
+
"clip": "ViT-L/14",
|
| 18 |
+
"bert": "dbmdz/bert-base-turkish-cased",
|
| 19 |
+
"proj": True,
|
| 20 |
+
"proj_num_head": 16
|
| 21 |
+
})
|
| 22 |
+
device = torch.device(opt.device)
|
| 23 |
+
model.load_state_dict(torch.load(opt.model_ckpt, map_location=device)["model"], strict=True)
|
| 24 |
+
model = model.to(device)
|
| 25 |
+
model.eval()
|
| 26 |
+
|
| 27 |
+
image_paths = glob.glob(os.path.join(opt.input_dir, '*.jpg'))
|
| 28 |
+
|
| 29 |
+
for image_path in sorted(image_paths):
|
| 30 |
+
img_name = image_path.split('/')[-1]
|
| 31 |
+
img0 = Image.open(image_path)
|
| 32 |
+
batch = preprocess(img0).unsqueeze(0).to(device)
|
| 33 |
+
caption = model.generate(batch, min_length=11, repetition_penalty=1.6)[0]
|
| 34 |
+
print(f"{img_name} :", caption)
|
| 35 |
+
|
| 36 |
+
orj_img = numpy.array(img0)[:, :, ::-1]
|
| 37 |
+
h, w, _ = orj_img.shape
|
| 38 |
+
new_h = 800
|
| 39 |
+
new_w = int(new_h * (w / h))
|
| 40 |
+
orj_img = cv2.resize(orj_img, (new_w, new_h))
|
| 41 |
+
|
| 42 |
+
cv2.imshow("image", orj_img)
|
| 43 |
+
cv2.waitKey(0)
|
| 44 |
+
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
if __name__ == '__main__':
|
| 49 |
+
parser = argparse.ArgumentParser(description='Turkish-Image-Captioning!')
|
| 50 |
+
parser.add_argument('--model-ckpt', type=str, default='./checkpoints/TRCaptionNet_L14_berturk.pth')
|
| 51 |
+
parser.add_argument('--input-dir', type=str, default='./images/')
|
| 52 |
+
parser.add_argument('--device', type=str, default='cuda:0')
|
| 53 |
+
args = parser.parse_args()
|
| 54 |
+
demo(args)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.0.0
|
| 2 |
+
torchvision==0.15.1
|
| 3 |
+
opencv-python==4.6.0.66
|
| 4 |
+
transformers==4.27.3
|
| 5 |
+
ftfy==6.1.1
|
| 6 |
+
gradio==3.48.0
|
| 7 |
+
gdown==4.7.1
|