Spaces:
Paused
Paused
File size: 16,178 Bytes
08b23ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pytorch3d.io import load_obj
from pytorch3d.renderer import TexturesAtlas
from pytorch3d.structures import Meshes
import os
import torch
import json
import numpy as np
from tqdm import tqdm
from pathlib import Path
import subprocess
from PIL import Image
from scipy.ndimage import gaussian_filter1d
from third_partys.co_tracker.save_track import save_track
def render_single_mesh(renderer, mesh_path, out_path="render_result.png", atlas_size=8):
"""
Test render a single mesh and save the result.
"""
device = renderer.device
verts, faces, aux = load_obj(
mesh_path,
device=device,
load_textures=True,
create_texture_atlas=True,
texture_atlas_size=atlas_size,
texture_wrap="repeat"
)
atlas = aux.texture_atlas # (F, atlas_size, atlas_size, 3)
vmin, vmax = verts.min(0).values, verts.max(0).values
center = (vmax + vmin) / 2.
scale = (vmax - vmin).max()
verts = (verts - center) / scale
mesh_norm = Meshes(
verts=[verts],
faces=[faces.verts_idx],
textures=TexturesAtlas(atlas=[atlas])
)
with torch.no_grad():
rendered = renderer.render(mesh_norm) # shape=[1, H, W, 4]
rendered_img = renderer.tensor_to_image(rendered)
pil_img = Image.fromarray(rendered_img)
pil_img.save(out_path)
print(f"Saved render to {out_path}")
def apply_gaussian_smoothing(data, sigma = 1.0, preserve_first_frame = True, eps = 1e-8):
"""
Apply Gaussian smoothing along the time axis with quaternion normalization.
"""
smoothed = gaussian_filter1d(data, sigma=sigma, axis=0)
# Preserve first frame if requested
if preserve_first_frame and data.shape[0] > 0:
smoothed[0] = data[0]
if data.shape[-1] == 4:
norms = np.linalg.norm(smoothed, axis=-1, keepdims=True)
smoothed = smoothed / np.maximum(norms, eps)
return smoothed
def render_single_view_sequence(quats, root_quats, root_pos, renderer, model, output_dir, view_name, fps = 25):
"""
Render animation sequence from a single viewpoint.
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
T = quats.shape[0]
model.animate(quats, root_quats, root_pos)
for i in tqdm(range(T), desc=f"Rendering {view_name}"):
mesh = model.get_mesh(i)
rendered = renderer.render(mesh)
img_array = renderer.tensor_to_image(rendered)
img = Image.fromarray(img_array)
frame_path = output_dir / f"{view_name}_frame_{i:04d}.png"
img.save(frame_path)
# Create video
video_path = output_dir / f"{view_name}_output_video.mp4"
cmd = f"ffmpeg -y -framerate {fps} -i {output_dir}/{view_name}_frame_%04d.png -c:v libx264 -pix_fmt yuv420p {video_path}"
subprocess.call(cmd, shell=True)
def save_and_smooth_results(args, model, renderer, final_quats, root_quats, root_pos, out_dir, additional_renderers = None, load_pt = False, sigma = 1.0, fps = 25):
"""
Save and smooth animation results with multi-view rendering.
"""
device = final_quats.device
T = final_quats.shape[0]
# Save Raw Results
if not load_pt:
raw_dir = os.path.join(out_dir, "raw")
os.makedirs(raw_dir, exist_ok=True)
torch.save(final_quats, os.path.join(raw_dir, "local_quats.pt"))
torch.save(root_quats, os.path.join(raw_dir, "root_quats.pt"))
torch.save(root_pos, os.path.join(raw_dir, "root_pos.pt"))
if hasattr(model, 'rest_local_positions'):
torch.save(model.rest_local_positions, os.path.join(raw_dir, "rest_local_positions.pt"))
print(f"Saved raw motion to {raw_dir}")
quats_np = final_quats.cpu().numpy()
root_quats_np = root_quats.cpu().numpy()
root_pos_np = root_pos.cpu().numpy()
# Apply Gaussian smoothing if enabled
if args.gauss_filter:
print(f"Applying Gaussian smoothing (sigma={sigma})")
smooth_quats_np = apply_gaussian_smoothing(
quats_np, sigma=sigma, preserve_first_frame=True
)
smooth_root_quats_np = apply_gaussian_smoothing(
root_quats_np, sigma=sigma, preserve_first_frame=True
)
smooth_root_pos_np = apply_gaussian_smoothing(
root_pos_np, sigma=sigma, preserve_first_frame=True
)
smooth_dir = os.path.join(out_dir, "smoothed")
os.makedirs(smooth_dir, exist_ok=True)
save_dir = smooth_dir
else:
smooth_quats_np = quats_np
smooth_root_quats_np = root_quats_np
smooth_root_pos_np = root_pos_np
save_dir = raw_dir
smooth_quats = torch.tensor(smooth_quats_np, dtype=torch.float32, device=device)
smooth_root_quats = torch.tensor(smooth_root_quats_np, dtype=torch.float32, device=device)
smooth_root_pos = torch.tensor(smooth_root_pos_np, dtype=torch.float32, device=device)
# Render Sequences
if not load_pt and args.gauss_filter:
smooth_dir_path = Path(smooth_dir)
torch.save(smooth_quats, smooth_dir_path / "local_quats.pt")
torch.save(smooth_root_quats, smooth_dir_path / "root_quats.pt")
torch.save(smooth_root_pos, smooth_dir_path / "root_pos.pt")
print(f"Saved smoothed motion to {smooth_dir}")
# Render main view
print(f"Rendering {args.main_renderer} view ({T} frames)")
render_single_view_sequence(
smooth_quats, smooth_root_quats, smooth_root_pos,
renderer, model, save_dir, args.main_renderer, fps
)
# Render additional views if provided
if additional_renderers:
for renderer_key, view_renderer in additional_renderers.items():
view_name = renderer_key.replace("_renderer", "")
render_single_view_sequence(
smooth_quats, smooth_root_quats, smooth_root_pos,
view_renderer, model, save_dir, view_name, fps
)
def save_args(args, output_dir, filename="config.json"):
args_dict = vars(args)
os.makedirs(output_dir, exist_ok=True)
config_path = os.path.join(output_dir, filename)
with open(config_path, 'w') as f:
json.dump(args_dict, f, indent=4)
def visualize_joints_on_mesh(model, renderer, seq_name, out_dir):
"""
Render mesh with joint visualizations and return visibility mask.
"""
joints_2d = renderer.project_points(model.joints_rest)
mesh = model.get_mesh()
image_with_joints, vis_mask = renderer.render_with_points(mesh, model.joints_rest)
image_np = image_with_joints[0].cpu().numpy()
if image_np.shape[2] == 4:
image_rgb = image_np[..., :3]
else:
image_rgb = image_np
if image_rgb.max() <= 1.0:
image_rgb = (image_rgb * 255).astype(np.uint8)
img = Image.fromarray(image_rgb)
output_path = f"{out_dir}/mesh_with_joints_{seq_name}_visible.png"
img.save(output_path)
return vis_mask
def visualize_points_on_mesh(model, renderer, seq_name, out_dir):
"""
Render mesh with point visualizations and return visibility mask.
"""
points_2d = renderer.project_points(model.vertices[0])
mesh = model.get_mesh()
image_with_points, vis_mask = renderer.render_with_points(mesh, model.vertices[0], for_vertices=True)
image_np = image_with_points[0].cpu().numpy()
if image_np.shape[2] == 4:
image_rgb = image_np[..., :3]
else:
image_rgb = image_np
if image_rgb.max() <= 1.0:
image_rgb = (image_rgb * 255).astype(np.uint8)
img = Image.fromarray(image_rgb)
output_path = f"{out_dir}/mesh_with_verts_{seq_name}_visible.png"
img.save(output_path)
return vis_mask
def save_track_points(point_vis_mask, renderer, model, img_path, out_dir, args):
"""
Save and track selected points on the mesh with intelligent sampling.
"""
vertex_project_2d = renderer.project_points(model.vertices[0])
visible_indices = torch.where(point_vis_mask)[0]
track_2d_point_path = img_path.replace('imgs', 'track_2d_verts')
os.makedirs(track_2d_point_path, exist_ok=True)
num_visible = len(visible_indices)
MAX_VISIBLE_POINTS = 15000
MAX_SAMPLE_POINTS = 4000
# Determine tracking strategy
tracking_mode = "full" if num_visible <= MAX_VISIBLE_POINTS else "sampled"
if not os.listdir(track_2d_point_path):
# Generate new tracking data
if tracking_mode == "full":
print(f"Saving tracks for all visible vertices (count: {num_visible})")
# Track all visible points
visible_vertex_project_2d = vertex_project_2d[visible_indices]
track_2d_point = save_track(
args.seq_name, visible_vertex_project_2d, img_path,
track_2d_point_path, out_dir, for_point=True
)
np.save(f'{track_2d_point_path}/visible_indices.npy',
visible_indices.cpu().numpy())
# Sample subset for final use
num_sample = min(MAX_SAMPLE_POINTS, num_visible)
sampled_local_indices = torch.randperm(num_visible)[:num_sample]
sampled_vertex_indices = visible_indices[sampled_local_indices]
np.save(f'{track_2d_point_path}/sampled_indices.npy',
sampled_vertex_indices.cpu().numpy())
else:
print(f"Too many visible vertices ({num_visible} > {MAX_VISIBLE_POINTS}), "
f"tracking only {MAX_SAMPLE_POINTS} sampled vertices")
# Sample points directly from visible set
num_sample = min(MAX_SAMPLE_POINTS, num_visible)
sampled_local_indices = torch.randperm(num_visible)[:num_sample]
sampled_vertex_indices = visible_indices[sampled_local_indices]
# Track only sampled points
sampled_vertex_project_2d = vertex_project_2d[sampled_vertex_indices]
track_2d_point = save_track(
args.seq_name, sampled_vertex_project_2d, img_path,
track_2d_point_path, out_dir, for_point=True
)
np.save(f'{track_2d_point_path}/visible_indices.npy',
visible_indices.cpu().numpy())
np.save(f'{track_2d_point_path}/sampled_indices.npy',
sampled_vertex_indices.cpu().numpy())
else:
# Load existing tracking data
print("Loading existing vertex tracks")
track_2d_point = np.load(f'{track_2d_point_path}/pred_tracks.npy')
visible_indices = np.load(f'{track_2d_point_path}/visible_indices.npy')
visible_indices = torch.from_numpy(visible_indices).long().to(args.device)
sampled_vertex_indices = np.load(f'{track_2d_point_path}/sampled_indices.npy')
sampled_vertex_indices = torch.from_numpy(sampled_vertex_indices).long().to(args.device)
track_2d_point = torch.from_numpy(track_2d_point).float().to(args.device)
# Create index mapping for tracking data
if tracking_mode == "full":
# Map from original vertex indices to positions in tracking data
vertex_to_track_idx = {idx.item(): i for i, idx in enumerate(visible_indices)}
track_indices = torch.tensor(
[vertex_to_track_idx[idx.item()] for idx in sampled_vertex_indices],
device=args.device, dtype=torch.long
)
else:
# Direct mapping for sampled-only tracking
track_indices = torch.arange(len(sampled_vertex_indices),
device=args.device, dtype=torch.long)
return track_2d_point, track_indices, sampled_vertex_indices
def save_final_video(args):
additional_views = [view.strip() for view in args.additional_renderers.split(',') if view.strip()]
if len(additional_views) > 3:
additional_views = additional_views[:3]
additional_views = [view for view in additional_views if view != args.main_renderer]
save_dir = 'raw' if not args.gauss_filter else 'smoothed'
import subprocess
cmd = (
f'ffmpeg '
f'-i {args.input_path}/{args.seq_name}/input.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{args.main_renderer}_output_video.mp4 '
'-filter_complex "'
'[0:v][1:v]hstack=inputs=2[stacked]; '
'[stacked]drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'gt\':x=(w/4-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'ours\':x=(3*w/4-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10" '
f'-c:a copy {args.save_path}/{args.seq_name}/{args.save_name}/concat_output.mp4'
)
subprocess.call(cmd, shell=True)
cmd = (
f'ffmpeg '
f'-i {args.input_path}/{args.seq_name}/input.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{args.main_renderer}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[0]}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[1]}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[2]}_output_video.mp4 '
'-filter_complex "'
'[0:v][1:v][2:v][3:v][4:v]hstack=inputs=5[stacked]; '
'[stacked]drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'gt\':x=(w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{args.main_renderer}\':x=(3*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[0]}\':x=(5*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[1]}\':x=(7*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[2]}\':x=(9*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10" '
f'-c:a copy {args.save_path}/{args.seq_name}/{args.save_name}/concat_output_4view.mp4'
)
subprocess.call(cmd, shell=True)
def load_motion_data(motion_dir, device="cuda:0"):
"""
Load saved motion data.
"""
local_quats = torch.load(os.path.join(motion_dir, "local_quats.pt"), map_location=device)
root_quats = torch.load(os.path.join(motion_dir, "root_quats.pt"), map_location=device)
root_pos = torch.load(os.path.join(motion_dir, "root_pos.pt"), map_location=device)
# Load rest positions if available (for reference)
rest_pos_path = os.path.join(motion_dir, "rest_local_positions.pt")
if os.path.exists(rest_pos_path):
rest_positions = torch.load(rest_pos_path, map_location=device)
else:
rest_positions = None
print("Warning: rest_local_positions.pt not found, model should have them initialized")
return local_quats, root_quats, root_pos, rest_positions |