Spaces:
Paused
Paused
File size: 17,829 Bytes
08b23ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import cv2
import json
import trimesh
from collections import deque, defaultdict
from scipy.cluster.hierarchy import linkage, fcluster
from data_utils.pyrender_wrapper import PyRenderWrapper
from data_utils.data_loader import DataLoader
def save_mesh(vertices, faces, filename):
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
mesh.export(filename, file_type='obj')
def pred_joints_and_bones(bone_coor):
"""
get joints (j,3) and bones (b,2) from (b,2,3), preserve the parent-child relationship
"""
parent_coords = bone_coor[:, 0, :] # (b, 3)
child_coords = bone_coor[:, 1, :] # (b, 3)
all_coords = np.vstack([parent_coords, child_coords]) # (2b, 3)
pred_joints, indices = np.unique(all_coords, axis=0, return_inverse=True)
b = bone_coor.shape[0]
parent_indices = indices[:b]
child_indices = indices[b:]
pred_bones = np.column_stack([parent_indices, child_indices])
valid_bones = pred_bones[parent_indices != child_indices]
return pred_joints, valid_bones
def merge_duplicate_joints_and_fix_bones(joints, bones, tolerance=0.0025, root_index=None):
"""
merge duplicate joints that are within a certain tolerance distance, and fix bones to maintain connectivity.
Also merge bones that become duplicates after joint merging.
"""
n_joints = len(joints)
# find merge joint groups
merge_groups = []
used = [False] * n_joints
for i in range(n_joints):
if used[i]:
continue
# find all joints within tolerance distance to joint i
group = [i]
for j in range(i + 1, n_joints):
if not used[j]:
dist = np.linalg.norm(joints[i] - joints[j])
if dist < tolerance:
group.append(j)
used[j] = True
used[i] = True
merge_groups.append(group)
# if len(group) > 1:
# print(f"find duplicate joints group: {group}")
# build merge map: choose representative joint
merge_map = {}
for group in merge_groups:
if root_index is not None and root_index in group:
representative = root_index
else:
representative = group[0] # else choose the first one as representative
for joint_idx in group:
merge_map[joint_idx] = representative
# track root joint change
intermediate_root_index = None
if root_index is not None:
intermediate_root_index = merge_map.get(root_index, root_index)
# if intermediate_root_index != root_index:
# print(f"root joint index changed from {root_index} to {intermediate_root_index}")
# update bones: remove self-loop bones, and merge duplicate bones
updated_bones = []
for parent, child in bones:
new_parent = merge_map.get(parent, parent)
new_child = merge_map.get(child, child)
if new_parent != new_child: # remove self-loop bones
updated_bones.append([new_parent, new_child])
# remove duplicate bones
unique_bones = []
seen_bones = set()
for bone in updated_bones:
bone_key = tuple(bone) # keep the order of [parent, child]
if bone_key not in seen_bones:
seen_bones.add(bone_key)
unique_bones.append(bone)
# re-index joints to remove unused joints
used_joint_indices = set()
for parent, child in unique_bones:
used_joint_indices.add(parent)
used_joint_indices.add(child)
if intermediate_root_index is not None:
used_joint_indices.add(intermediate_root_index)
used_joint_indices = sorted(list(used_joint_indices))
# new index for used joints
old_to_new = {old_idx: new_idx for new_idx, old_idx in enumerate(used_joint_indices)}
final_joints = joints[used_joint_indices]
final_bones = np.array([[old_to_new[parent], old_to_new[child]]
for parent, child in unique_bones])
final_root_index = None
if intermediate_root_index is not None:
final_root_index = old_to_new[intermediate_root_index]
if root_index is not None and final_root_index != root_index:
print(f"final root index: {root_index} -> {final_root_index}")
removed_joints = n_joints - len(final_joints)
removed_bones = len(bones) - len(final_bones)
# print
# if removed_joints > 0 or removed_bones > 0:
# print(f"merge results:")
# print(f" joint number: {n_joints} -> {len(final_joints)} (remove {removed_joints})")
# print(f" bone number: {len(bones)} -> {len(final_bones)} (remove {removed_bones})")
if root_index is not None:
return final_joints, final_bones, final_root_index
else:
return final_joints, final_bones
def save_skeleton_to_txt(pred_joints, pred_bones, pred_root_index, hier_order, vertices, filename='skeleton.txt'):
"""
save skeleton to txt file, the format follows Rignet (joints, root, hier)
if hier_order: the first joint index in bone is root joint index, and parent-child relationship is established in bones.
else: we set the joint nearest to the mesh center as the root joint, and then build hierarchy starting from root.
"""
num_joints = pred_joints.shape[0]
# assign joint names
joint_names = [f'joint{i}' for i in range(num_joints)]
adjacency = defaultdict(list)
for bone in pred_bones:
idx_a, idx_b = bone
adjacency[idx_a].append(idx_b)
adjacency[idx_b].append(idx_a)
# find root joint
if hier_order:
root_idx = pred_root_index
else:
centroid = np.mean(vertices, axis=0)
distances = np.linalg.norm(pred_joints - centroid, axis=1)
root_idx = np.argmin(distances)
root_name = joint_names[root_idx]
# build hierarchy
parent_map = {}
if hier_order:
visited = set()
for parent_idx, child_idx in pred_bones:
if child_idx not in parent_map:
parent_map[child_idx] = parent_idx
visited.add(child_idx)
visited.add(parent_idx)
parent_map[root_idx] = None
else:
visited = set([root_idx])
queue = deque([root_idx])
parent_map[root_idx] = None
while queue:
current_idx = queue.popleft()
for neighbor_idx in adjacency[current_idx]:
if neighbor_idx not in visited:
parent_map[neighbor_idx] = current_idx
visited.add(neighbor_idx)
queue.append(neighbor_idx)
if len(visited) != num_joints:
print(f"bones are not fully connected, leaving {num_joints - len(visited)} joints unconnected.")
# save joints
joints_lines = []
for idx, coord in enumerate(pred_joints):
name = joint_names[idx]
joints_line = f'joints {name} {coord[0]:.8f} {coord[1]:.8f} {coord[2]:.8f}'
joints_lines.append(joints_line)
# save root name
root_line = f'root {root_name}'
# save hierarchy
hier_lines = []
for child_idx, parent_idx in parent_map.items():
if parent_idx is not None:
parent_name = joint_names[parent_idx]
child_name = joint_names[child_idx]
hier_line = f'hier {parent_name} {child_name}'
hier_lines.append(hier_line)
with open(filename, 'w') as file:
for line in joints_lines:
file.write(line + '\n')
file.write(root_line + '\n')
for line in hier_lines:
file.write(line + '\n')
def save_skeleton_to_txt_joint(pred_joints, pred_bones, filename='skeleton.txt'):
"""
save skeleton to txt file, the format follows Rignet (joints, root, hier)
"""
num_joints = pred_joints.shape[0]
# assign joint names
joint_names = [f'joint{i}' for i in range(num_joints)]
# find potential root joints
all_parents = set([bone[0] for bone in pred_bones])
all_children = set([bone[1] for bone in pred_bones])
potential_roots = all_parents - all_children
# determine root joint
if not potential_roots:
print("Warning: No joint is only a parent, choosing the first joint as root.")
root_idx = pred_bones[0, 0]
else:
if len(potential_roots) > 1:
print(f"Warning: Multiple potential root joints found ({len(potential_roots)}), choosing the first one.")
root_idx = list(potential_roots)[0]
root_name = joint_names[root_idx]
# build hierarchy
parent_map = {}
visited = set()
for parent_idx, child_idx in pred_bones:
if child_idx not in parent_map:
parent_map[child_idx] = parent_idx
visited.add(child_idx)
visited.add(parent_idx)
parent_map[root_idx] = None
if len(visited) != num_joints:
print(f"Warning: bones are not fully connected, leaving {num_joints - len(visited)} joints unconnected.")
# save joints
joints_lines = []
for idx, coord in enumerate(pred_joints):
name = joint_names[idx]
joints_line = f'joints {name} {coord[0]:.8f} {coord[1]:.8f} {coord[2]:.8f}'
joints_lines.append(joints_line)
# save root name
root_line = f'root {root_name}'
# save hierarchy
hier_lines = []
for child_idx, parent_idx in parent_map.items():
if parent_idx is not None:
parent_name = joint_names[parent_idx]
child_name = joint_names[child_idx]
hier_line = f'hier {parent_name} {child_name}'
hier_lines.append(hier_line)
with open(filename, 'w') as file:
for line in joints_lines:
file.write(line + '\n')
file.write(root_line + '\n')
for line in hier_lines:
file.write(line + '\n')
return root_idx
def save_skeleton_obj(joints, bones, save_path, root_index=None, radius_sphere=0.01,
radius_bone=0.005, segments=16, stacks=16, use_cone=False):
"""
Save skeletons to obj file, each connection contains two red spheres (joint) and one blue cylinder (bone).
if root index is known, set root sphere to green.
"""
all_vertices = []
all_colors = []
all_faces = []
vertex_offset = 0
# create spheres for joints
for i, joint in enumerate(joints):
# define color
if root_index is not None and i == root_index:
color = (0, 1, 0) # green for root joint
else:
color = (1, 0, 0) # red for other joints
# create joint sphere
sphere_vertices, sphere_faces = create_sphere(joint, radius=radius_sphere, segments=segments, stacks=stacks)
all_vertices.extend(sphere_vertices)
all_colors.extend([color] * len(sphere_vertices))
# adjust face index
adjusted_sphere_faces = [(v1 + vertex_offset, v2 + vertex_offset, v3 + vertex_offset) for (v1, v2, v3) in sphere_faces]
all_faces.extend(adjusted_sphere_faces)
vertex_offset += len(sphere_vertices)
# create bones
for bone in bones:
parent_idx, child_idx = bone
parent = joints[parent_idx]
child = joints[child_idx]
try:
bone_vertices, bone_faces = create_bone(parent, child, radius=radius_bone, segments=segments, use_cone=use_cone)
except ValueError as e:
print(f"Skipping connection {parent_idx}-{child_idx}, reason: {e}")
continue
all_vertices.extend(bone_vertices)
all_colors.extend([(0, 0, 1)] * len(bone_vertices)) # blue
# adjust face index
adjusted_bone_faces = [(v1 + vertex_offset, v2 + vertex_offset, v3 + vertex_offset) for (v1, v2, v3) in bone_faces]
all_faces.extend(adjusted_bone_faces)
vertex_offset += len(bone_vertices)
# save to obj
obj_lines = []
for v, c in zip(all_vertices, all_colors):
obj_lines.append(f"v {v[0]} {v[1]} {v[2]} {c[0]} {c[1]} {c[2]}")
obj_lines.append("")
for face in all_faces:
obj_lines.append(f"f {face[0]} {face[1]} {face[2]}")
with open(save_path, 'w') as obj_file:
obj_file.write("\n".join(obj_lines))
def create_sphere(center, radius=0.01, segments=16, stacks=16):
vertices = []
faces = []
for i in range(stacks + 1):
lat = np.pi / 2 - i * np.pi / stacks
xy = radius * np.cos(lat)
z = radius * np.sin(lat)
for j in range(segments):
lon = j * 2 * np.pi / segments
x = xy * np.cos(lon) + center[0]
y = xy * np.sin(lon) + center[1]
vertices.append((x, y, z + center[2]))
for i in range(stacks):
for j in range(segments):
first = i * segments + j
second = first + segments
third = first + 1 if (j + 1) < segments else i * segments
fourth = second + 1 if (j + 1) < segments else (i + 1) * segments
faces.append((first + 1, second + 1, fourth + 1))
faces.append((first + 1, fourth + 1, third + 1))
return vertices, faces
def create_bone(start, end, radius=0.005, segments=16, use_cone=False):
dir_vector = np.array(end) - np.array(start)
height = np.linalg.norm(dir_vector)
if height == 0:
raise ValueError("Start and end points cannot be the same for a cone.")
dir_vector = dir_vector / height
z = np.array([0, 0, 1])
if np.allclose(dir_vector, z):
R = np.identity(3)
elif np.allclose(dir_vector, -z):
R = np.array([[-1,0,0],[0,-1,0],[0,0,1]])
else:
v = np.cross(z, dir_vector)
s = np.linalg.norm(v)
c = np.dot(z, dir_vector)
kmat = np.array([[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]])
R = np.identity(3) + kmat + np.matmul(kmat, kmat) * ((1 - c) / (s**2))
theta = np.linspace(0, 2 * np.pi, segments, endpoint=False)
base_circle = np.array([np.cos(theta), np.sin(theta), np.zeros(segments)]) * radius
vertices = []
for point in base_circle.T:
rotated = np.dot(R, point) + np.array(start)
vertices.append(tuple(rotated))
faces = []
if use_cone:
vertices.append(tuple(end))
apex_idx = segments + 1
for i in range(segments):
next_i = (i + 1) % segments
faces.append((i + 1, next_i + 1, apex_idx))
else:
top_circle = np.array([np.cos(theta), np.sin(theta), np.ones(segments)]) * radius
for point in top_circle.T:
point_scaled = np.array([point[0], point[1], height])
rotated = np.dot(R, point_scaled) + np.array(start)
vertices.append(tuple(rotated))
for i in range(segments):
next_i = (i + 1) % segments
faces.append((i + 1, next_i + 1, next_i + segments + 1))
faces.append((i + 1, next_i + segments + 1, i + segments + 1))
return vertices, faces
def render_mesh_with_skeleton(joints, bones, vertices, faces, output_dir, filename, prefix='pred', root_idx=None):
"""
Render the mesh with skeleton using PyRender.
"""
loader = DataLoader()
raw_size = (960, 960)
renderer = PyRenderWrapper(raw_size)
save_dir = os.path.join(output_dir, 'render_results')
os.makedirs(save_dir, exist_ok=True)
loader.joints = joints
loader.bones = bones
loader.root_idx = root_idx
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
mesh.visual.vertex_colors[:, 3] = 100 # set transparency
loader.mesh = mesh
v = mesh.vertices
xmin, ymin, zmin = v.min(axis=0)
xmax, ymax, zmax = v.max(axis=0)
loader.bbox_center = np.array([(xmax + xmin)/2, (ymax + ymin)/2, (zmax + zmin)/2])
loader.bbox_size = np.array([xmax - xmin, ymax - ymin, zmax - zmin])
loader.bbox_scale = max(xmax - xmin, ymax - ymin, zmax - zmin)
loader.normalize_coordinates()
input_dict = loader.query_mesh_rig()
angles = [0, np.pi/2, np.pi, 3*np.pi/2]
distance = np.max(loader.bbox_size) * 2
subfolder_path = os.path.join(save_dir, filename + '_' + prefix)
os.makedirs(subfolder_path, exist_ok=True)
for i, angle in enumerate(angles):
renderer.set_camera_view(angle, loader.bbox_center, distance)
renderer.align_light_to_camera()
color = renderer.render(input_dict)[0]
output_filename = f"{filename}_{prefix}_view{i+1}.png"
output_filepath = os.path.join(subfolder_path, output_filename)
cv2.imwrite(output_filepath, color)
def save_args(args, output_dir, filename="config.json"):
args_dict = vars(args)
os.makedirs(output_dir, exist_ok=True)
config_path = os.path.join(output_dir, filename)
with open(config_path, 'w') as f:
json.dump(args_dict, f, indent=4) |