File size: 5,622 Bytes
08b23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2007 Free Software Foundation, Inc. <https://fsf.org/>
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates.
# SPDX-License-Identifier: GNU General Public License v3.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025.09.04
#
# Original file was released under GNU General Public License v3.0, with the full license text
# available at https://github.com/zhan-xu/RigNet/blob/master/LICENSE-GPLv3.txt.
#
# This modified file is released under the same license.


import numpy as np
try:
    import Queue as Q  # ver. < 3.0
except ImportError:
    import queue as Q

class Node(object):
    def __init__(self, name, pos):
        self.name = name
        self.pos = pos

class TreeNode(Node):
    def __init__(self, name, pos):
        super(TreeNode, self).__init__(name, pos)
        self.children = []
        self.parent = None


class Info:
    """
    Wrap class for rig information
    """
    def __init__(self, filename=None):
        self.joint_pos = {}
        self.joint_skin = []
        self.root = None
        if filename is not None:
            self.load(filename)

    def load(self, filename):
        with open(filename, 'r') as f_txt:
            lines = f_txt.readlines()
        
        for line in lines:
            word = line.split()
            if word[0] == 'joints':
                self.joint_pos[word[1]] = [float(word[2]), float(word[3]), float(word[4])]

        for line in lines:
            word = line.split()
            if word[0] == 'root':
                root_pos = self.joint_pos[word[1]]
                self.root = TreeNode(word[1], (root_pos[0], root_pos[1], root_pos[2]))
            elif word[0] == 'skin':
                skin_item = word[1:]
                self.joint_skin.append(skin_item)
        self.loadHierarchy_recur(self.root, lines, self.joint_pos)

    def loadHierarchy_recur(self, node, lines, joint_pos):
        for li in lines:
            if li.split()[0] == 'hier' and li.split()[1] == node.name:
                pos = joint_pos[li.split()[2]]
                ch_node = TreeNode(li.split()[2], tuple(pos))
                node.children.append(ch_node)
                ch_node.parent = node
                self.loadHierarchy_recur(ch_node, lines, joint_pos)

    def save(self, filename):
        with open(filename, 'w') as file_info:
            for key, val in self.joint_pos.items():
                file_info.write(
                    'joints {0} {1:.8f} {2:.8f} {3:.8f}\n'.format(key, val[0], val[1], val[2]))
            file_info.write('root {}\n'.format(self.root.name))

            for skw in self.joint_skin:
                cur_line = 'skin {0} '.format(skw[0])
                for cur_j in range(1, len(skw), 2):
                    cur_line += '{0} {1:.2f} '.format(skw[cur_j], float(skw[cur_j+1]))
                cur_line += '\n'
                file_info.write(cur_line)

            this_level = self.root.children
            while this_level:
                next_level = []
                for p_node in this_level:
                    file_info.write('hier {0} {1}\n'.format(p_node.parent.name, p_node.name))
                    next_level += p_node.children
                this_level = next_level

    def save_as_skel_format(self, filename):
        fout = open(filename, 'w')
        this_level = [self.root]
        hier_level = 1
        while this_level:
            next_level = []
            for p_node in this_level:
                pos = p_node.pos
                parent = p_node.parent.name if p_node.parent is not None else 'None'
                line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2],
                                                                   parent)
                fout.write(line)
                for c_node in p_node.children:
                    next_level.append(c_node)
            this_level = next_level
            hier_level += 1
        fout.close()

    def normalize(self, scale, trans):
        for k, v in self.joint_pos.items():
            self.joint_pos[k] /= scale
            self.joint_pos[k] -= trans


        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                node.pos /= scale
                node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2])
                for ch in node.children:
                    next_level.append(ch)
            this_level = next_level

    def get_joint_dict(self):
        joint_dict = {}
        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                joint_dict[node.name] = node.pos
                next_level += node.children
            this_level = next_level
        return joint_dict

    def adjacent_matrix(self):
        joint_pos = self.get_joint_dict()
        joint_name_list = list(joint_pos.keys())
        num_joint = len(joint_pos)
        adj_matrix = np.zeros((num_joint, num_joint))
        this_level = [self.root]
        while this_level:
            next_level = []
            for p_node in this_level:
                for c_node in p_node.children:
                    index_parent = joint_name_list.index(p_node.name)
                    index_children = joint_name_list.index(c_node.name)
                    adj_matrix[index_parent, index_children] = 1.
                next_level += p_node.children
            this_level = next_level
        adj_matrix = adj_matrix + adj_matrix.transpose()
        return adj_matrix