File size: 6,195 Bytes
08b23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#  Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
# 
#  http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import numpy as np
import h5py
from tqdm import tqdm
import scipy.sparse as sp
from concurrent.futures import ProcessPoolExecutor, as_completed
from functools import partial
from dataclasses import dataclass
from typing import List, Dict, Any, Optional
from utils.util import read_obj_file, read_rig_file, normalize_to_unit_cube, build_adjacency_list, compute_graph_distance, get_tpl_edges

@dataclass
class ProcessedSample:
    """Data structure for a processed sample."""
    vertices: np.ndarray
    faces: np.ndarray
    joints: np.ndarray
    bones: np.ndarray
    root_index: int
    pc_w_norm: np.ndarray
    file_name: str
    skin: np.ndarray
    graph_dist: np.ndarray
    edges: np.ndarray

def process_sample(data: Dict[str, Any]) -> Optional[ProcessedSample]:
    """
    Process a single sample from the dataset.
    
    Args:
        data: Dictionary containing sample data
        
    Returns:
        ProcessedSample object or None if processing fails
    """
    vertices = data['vertices'].copy()
    joints = data['joints'].copy()
    if len(joints) > 70: # filter out data with too many joints
        return None
    
    vertices, center, scale = normalize_to_unit_cube(vertices, 0.9995)
    joints = (joints - center) * scale

    # Build skinning weights matrix
    skinning_data = data['skinning_weights_value']
    skinning_rows = data['skinning_weights_row']
    skinning_cols = data['skinning_weights_col']
    skinning_shape = data['skinning_weights_shape']

    skinning_sparse = sp.coo_matrix(
        (skinning_data, (skinning_rows, skinning_cols)), 
        shape=skinning_shape
    )
    skinning_weights = skinning_sparse.toarray()  # (n_vertex, n_joints)
    
    # Compute topology and graph features
    edges = get_tpl_edges(data['vertices'], data['faces'])
    num_joints = len(data['joints'])
    adjacency = build_adjacency_list(num_joints, data['bones'])
    graph_dist = compute_graph_distance(num_joints, adjacency)

    return ProcessedSample(
        vertices=vertices,
        faces=data['faces'],
        joints=joints,
        bones=data['bones'],
        root_index=data['root_index'],
        pc_w_norm=data['pc_w_norm'],
        file_name=data['uuid'],
        skin=skinning_weights,
        graph_dist=graph_dist,
        edges=edges
    )

def parallel_process_samples(
    data_list: List[Dict[str, Any]], 
    max_workers: Optional[int] = None
) -> List[ProcessedSample]:
    """
    Process multiple samples in parallel.
    
    Args:
        data_list: List of sample dictionaries
        max_workers: Maximum number of worker processes
        
    Returns:
        List of successfully processed samples
    """
    processed_samples = []

    with ProcessPoolExecutor(max_workers=max_workers) as executor:
        # Submit all tasks
        futures = {executor.submit(process_sample, data): data for data in data_list}
        
        # Process results with progress bar
        for future in tqdm(as_completed(futures), total=len(futures), desc='Processing samples'):
            try:
                result = future.result()
                if result is not None:
                    processed_samples.append(result)
                else:
                    original_data = futures[future]
            except Exception as e:
                original_data = futures[future]
                print(f"Exception in processing {original_data.get('file_name', 'unknown')}: {e}")
                    
    return processed_samples

def save_to_h5(processed_samples: List[ProcessedSample], output_path: str) -> None:
    """
    Save processed samples to HDF5 file.
    
    Args:
        processed_samples: List of processed samples
        output_path: Output HDF5 file path
    """
    with h5py.File(output_path, 'w') as f:
        # Add metadata
        f.attrs['num_samples'] = len(processed_samples)
        f.attrs['version'] = '1.0'
        
        for i, sample in enumerate(tqdm(processed_samples, desc='Saving to HDF5')):
            grp = f.create_group(f'sample_{i}')

            # Save arrays with compression
            grp.create_dataset('joints', data=sample.joints, compression='gzip')
            grp.create_dataset('bones', data=sample.bones, compression='gzip')
            grp.create_dataset('root_index', data=sample.root_index, dtype='i')
            grp.create_dataset('pc_w_norm', data=sample.pc_w_norm, compression='gzip')
            grp.create_dataset('vertices', data=sample.vertices, compression='gzip')
            grp.create_dataset('faces', data=sample.faces, compression='gzip')
            grp.create_dataset('edges', data=sample.edges, compression='gzip')
            grp.create_dataset('skin', data=sample.skin, compression='gzip')
            grp.create_dataset('graph_dist', data=sample.graph_dist, compression='gzip')
            string_dtype = h5py.special_dtype(vlen=str)
            grp.create_dataset('file_name', data=sample.file_name, dtype=string_dtype)


def main(npz_file_path, h5_file_path, max_workers):
    loaded_data = np.load(npz_file_path, allow_pickle=True)
    data_list = loaded_data['arr_0']

    num_samples = len(data_list)
    print(f"Total samples: {num_samples}")

    processed_samples = parallel_process_samples(
        data_list=data_list,
        max_workers=max_workers
    )
    save_to_h5(processed_samples, h5_file_path)
    print("Processing complete!")

if __name__ == '__main__':
    npz_file_path = 'articulation_xlv2_test.npz'
    h5_file_path = 'articulation_xlv2_test.h5'
    main(npz_file_path, h5_file_path, max_workers=8)