Spaces:
Paused
Paused
| # Copyright (c) 2023 Biao Zhang | |
| # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates. | |
| # SPDX-License-Identifier: MIT | |
| # | |
| # This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025.09.04 | |
| # | |
| # Original file was released under MIT, with the full license text | |
| # available at https://github.com/1zb/3DShape2VecSet/blob/master/LICENSE. | |
| # | |
| # This modified file is released under the same license. | |
| import builtins | |
| import datetime | |
| import os | |
| import time | |
| from collections import defaultdict, deque | |
| from pathlib import Path | |
| import torch | |
| import torch.distributed as dist | |
| import numpy as np | |
| from typing import List | |
| if torch.__version__[0] == '2': | |
| from torch import inf | |
| else: | |
| from torch._six import inf | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_distributed(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
| barrier() | |
| all_reduce_sum(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value, | |
| ) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| log_msg = [ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append('max mem: {memory:.0f}') | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| builtin_print = builtins.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| force = force or (get_world_size() > 8) | |
| if is_master:# or force: | |
| now = datetime.datetime.now().time() | |
| builtin_print('[{}] '.format(now), end='') # print with time stamp | |
| builtin_print(*args, **kwargs) | |
| builtins.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def init_distributed_mode(args): | |
| if args.dist_on_itp: | |
| args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
| args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
| args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) | |
| os.environ['LOCAL_RANK'] = str(args.gpu) | |
| os.environ['RANK'] = str(args.rank) | |
| os.environ['WORLD_SIZE'] = str(args.world_size) | |
| # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
| elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| elif 'SLURM_PROCID' in os.environ: | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| else: | |
| print('Not using distributed mode') | |
| setup_for_distributed(is_master=True) # hack | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| class NativeScalerWithGradNormCount: | |
| state_dict_key = "amp_scaler" | |
| def __init__(self): | |
| self._scaler = torch.cuda.amp.GradScaler() | |
| def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
| self._scaler.scale(loss).backward(create_graph=create_graph) | |
| if update_grad: | |
| if clip_grad is not None: | |
| assert parameters is not None | |
| self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| else: | |
| self._scaler.unscale_(optimizer) | |
| norm = get_grad_norm_(parameters) | |
| self._scaler.step(optimizer) | |
| self._scaler.update() | |
| else: | |
| norm = None | |
| return norm | |
| def state_dict(self): | |
| return self._scaler.state_dict() | |
| def load_state_dict(self, state_dict): | |
| self._scaler.load_state_dict(state_dict) | |
| def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = [p for p in parameters if p.grad is not None] | |
| norm_type = float(norm_type) | |
| if len(parameters) == 0: | |
| return torch.tensor(0.) | |
| device = parameters[0].grad.device | |
| if norm_type == inf: | |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
| else: | |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) | |
| return total_norm | |
| def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler): | |
| output_dir = Path(args.output_dir) | |
| epoch_name = str(epoch) | |
| if loss_scaler is not None: | |
| checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] | |
| for checkpoint_path in checkpoint_paths: | |
| to_save = { | |
| 'model': model_without_ddp.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'epoch': epoch, | |
| 'scaler': loss_scaler.state_dict(), | |
| 'args': args, | |
| } | |
| save_on_master(to_save, checkpoint_path) | |
| print("save") | |
| else: | |
| client_state = {'epoch': epoch} | |
| print("save fail") | |
| model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) | |
| def load_model(args, model_without_ddp, optimizer, loss_scaler): | |
| if args.resume: | |
| if args.resume.startswith('https'): | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| args.resume, map_location='cpu', check_hash=True) | |
| else: | |
| checkpoint = torch.load(args.resume, map_location='cpu') | |
| model_without_ddp.load_state_dict(checkpoint['model']) | |
| print("Resume checkpoint %s" % args.resume) | |
| if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| args.start_epoch = checkpoint['epoch'] + 1 | |
| if 'scaler' in checkpoint: | |
| loss_scaler.load_state_dict(checkpoint['scaler']) | |
| print("With optim & sched!") | |
| def all_reduce_mean(x): | |
| world_size = get_world_size() | |
| if world_size > 1: | |
| x_reduce = torch.tensor(x).cuda() | |
| dist.all_reduce(x_reduce) | |
| x_reduce /= world_size | |
| return x_reduce.item() | |
| else: | |
| return x | |
| def is_distributed(): | |
| if not dist.is_available() or not dist.is_initialized(): | |
| return False | |
| return True | |
| def barrier(): | |
| if not is_distributed(): | |
| return | |
| torch.distributed.barrier() | |
| def all_reduce_sum(tensor): | |
| if not is_distributed(): | |
| return tensor | |
| dim_squeeze = False | |
| if tensor.ndim == 0: | |
| tensor = tensor[None, ...] | |
| dim_squeeze = True | |
| torch.distributed.all_reduce(tensor) | |
| print("loss_tensor: ", tensor) | |
| if dim_squeeze: | |
| tensor = tensor.squeeze(0) | |
| return tensor |