# Copyright (c) 2007 Free Software Foundation, Inc. # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates. # SPDX-License-Identifier: GNU General Public License v3.0 # # This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025.09.04 # # Original file was released under GNU General Public License v3.0, with the full license text # available at https://github.com/zhan-xu/RigNet/blob/master/LICENSE-GPLv3.txt. # # This modified file is released under the same license. import numpy as np try: import Queue as Q # ver. < 3.0 except ImportError: import queue as Q class Node(object): def __init__(self, name, pos): self.name = name self.pos = pos class TreeNode(Node): def __init__(self, name, pos): super(TreeNode, self).__init__(name, pos) self.children = [] self.parent = None class Info: """ Wrap class for rig information """ def __init__(self, filename=None): self.joint_pos = {} self.joint_skin = [] self.root = None if filename is not None: self.load(filename) def load(self, filename): with open(filename, 'r') as f_txt: lines = f_txt.readlines() for line in lines: word = line.split() if word[0] == 'joints': self.joint_pos[word[1]] = [float(word[2]), float(word[3]), float(word[4])] for line in lines: word = line.split() if word[0] == 'root': root_pos = self.joint_pos[word[1]] self.root = TreeNode(word[1], (root_pos[0], root_pos[1], root_pos[2])) elif word[0] == 'skin': skin_item = word[1:] self.joint_skin.append(skin_item) self.loadHierarchy_recur(self.root, lines, self.joint_pos) def loadHierarchy_recur(self, node, lines, joint_pos): for li in lines: if li.split()[0] == 'hier' and li.split()[1] == node.name: pos = joint_pos[li.split()[2]] ch_node = TreeNode(li.split()[2], tuple(pos)) node.children.append(ch_node) ch_node.parent = node self.loadHierarchy_recur(ch_node, lines, joint_pos) def save(self, filename): with open(filename, 'w') as file_info: for key, val in self.joint_pos.items(): file_info.write( 'joints {0} {1:.8f} {2:.8f} {3:.8f}\n'.format(key, val[0], val[1], val[2])) file_info.write('root {}\n'.format(self.root.name)) for skw in self.joint_skin: cur_line = 'skin {0} '.format(skw[0]) for cur_j in range(1, len(skw), 2): cur_line += '{0} {1:.2f} '.format(skw[cur_j], float(skw[cur_j+1])) cur_line += '\n' file_info.write(cur_line) this_level = self.root.children while this_level: next_level = [] for p_node in this_level: file_info.write('hier {0} {1}\n'.format(p_node.parent.name, p_node.name)) next_level += p_node.children this_level = next_level def save_as_skel_format(self, filename): fout = open(filename, 'w') this_level = [self.root] hier_level = 1 while this_level: next_level = [] for p_node in this_level: pos = p_node.pos parent = p_node.parent.name if p_node.parent is not None else 'None' line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2], parent) fout.write(line) for c_node in p_node.children: next_level.append(c_node) this_level = next_level hier_level += 1 fout.close() def normalize(self, scale, trans): for k, v in self.joint_pos.items(): self.joint_pos[k] /= scale self.joint_pos[k] -= trans this_level = [self.root] while this_level: next_level = [] for node in this_level: node.pos /= scale node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2]) for ch in node.children: next_level.append(ch) this_level = next_level def get_joint_dict(self): joint_dict = {} this_level = [self.root] while this_level: next_level = [] for node in this_level: joint_dict[node.name] = node.pos next_level += node.children this_level = next_level return joint_dict def adjacent_matrix(self): joint_pos = self.get_joint_dict() joint_name_list = list(joint_pos.keys()) num_joint = len(joint_pos) adj_matrix = np.zeros((num_joint, num_joint)) this_level = [self.root] while this_level: next_level = [] for p_node in this_level: for c_node in p_node.children: index_parent = joint_name_list.index(p_node.name) index_children = joint_name_list.index(c_node.name) adj_matrix[index_parent, index_children] = 1. next_level += p_node.children this_level = next_level adj_matrix = adj_matrix + adj_matrix.transpose() return adj_matrix