File size: 22,825 Bytes
8ad9255
 
 
 
 
 
 
 
 
 
cb75d9a
 
8ad9255
cb75d9a
8ad9255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1a0040
 
 
 
 
 
5582337
b1a0040
 
 
 
 
 
5582337
b1a0040
 
8ad9255
b1a0040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad9255
b1a0040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb75d9a
b1a0040
 
 
 
 
 
 
 
8ad9255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33dfaba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad9255
 
 
 
33dfaba
8ad9255
 
 
 
 
33dfaba
8ad9255
 
 
 
 
 
 
33dfaba
 
 
 
8ad9255
 
 
33dfaba
 
8ad9255
 
33dfaba
 
 
 
 
 
8ad9255
33dfaba
8ad9255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33dfaba
 
8ad9255
 
 
33dfaba
 
8ad9255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
from typing import Dict, Optional
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import joblib
import os
import re
import torch
from deep_translator import GoogleTranslator

class HateSpeechClassifier:
    def __init__(self):
        base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
        models_dir = os.path.join(base_dir, "models", "model_weights", "custom_models")
        
        # Initialize translator
        self.translator = GoogleTranslator(source='bn', target='en')
        
        # Use multiple pretrained models for better accuracy
        self.pretrained_models = {
            "primary": {
                "name": "facebook/roberta-hate-speech-dynabench-r4-target",
                "pipeline": None,
                "weight": 0.6
            },
            "secondary": {
                "name": "cardiffnlp/twitter-roberta-base-hate-latest",
                "pipeline": None,
                "weight": 0.4
            }
        }
        
        # English custom model paths
        self.english_model_path = os.path.join(models_dir, "english_model.pkl")
        self.english_vectorizer_path = os.path.join(models_dir, "english_vectorizer.pkl")
        self.english_model = None
        self.english_vectorizer = None
        self.english_model_loaded = False
        
        # Bengali custom model paths
        self.bengali_model_path = os.path.join(models_dir, "bengali_model.pkl")
        self.bengali_vectorizer_path = os.path.join(models_dir, "bengali_vectorizer.pkl")
        self.bengali_model = None
        self.bengali_vectorizer = None
        self.bengali_model_loaded = False
        
        # Load models
        self._load_custom_models()
        
        # Enhanced hate keywords
        self.hate_keywords = {
            "english": [
                "hate", "kill", "death", "violence", "murder", "attack", "destroy", "eliminate",
                "die", "dead", "shoot", "stab", "burn", "hang", "lynch",
                "terrorist", "racist", "sexist", "discrimination", "discriminate",
                "scheduled caste", "scheduled tribe", "dalit", "lower caste", "untouchable",
                "chamar", "bhangi", "sc/st", "reservation quota",
                "no right to live", "don't deserve", "shouldn't exist", "subhuman",
                "inferior", "worthless", "scum", "vermin", "parasite",
                "should be killed", "must die", "deserve to die", "need to be eliminated",
                "jihadi", "kafir", "infidel", "terrorist religion", "religious extremist",
                "nigger", "chink", "paki", "kike", "faggot", "tranny"
            ],
            "bengali": [
                "শালা", "হালা", "মাগি", "কুত্তা", "হারামি", "চোদ", "বাল",
                "ঘৃণা", "মারো", "মৃত্যু", "সন্ত্রাসী", "বোকা", "মূর্খ",
                "বিদ্বেষ", "ভয়ঙ্কর", "জঘন্য", "হত্যা", "আক্রমণ",
                "দলিত", "নিম্নবর্ণ", "অস্পৃশ্য"
            ]
        }
        
        self.hate_patterns = {
            "english": [
                r"no right to (live|exist|be here|survive)",
                r"(should|must|need to|ought to) (die|be killed|be eliminated|perish)",
                r"don'?t deserve (to live|life|existence|to exist)",
                r"(get rid of|eliminate|exterminate|wipe out) (them|these|those|the)",
                r"(scheduled caste|dalit|lower caste|sc/st).{0,50}(no right|shouldn't|don't deserve)",
                r"(religious|ethnic|caste|racial) (cleansing|purification|genocide)",
                r"(send|throw|kick|drive) (them|back) (out|away|home)",
                r"(all|these) .{0,30} (should die|must be killed|need to go)",
                r"(death to|kill all|eliminate all) .{0,30}",
                r"(inferior|subhuman|less than human|not human)",
            ],
            "bengali": [
                r"বাঁচার অধিকার নেই",
                r"মরে যাওয়া উচিত",
                r"নিশ্চিহ্ন করা উচিত"
            ]
        }
        
        self.offensive_keywords = {
            "english": [
                "damn", "hell", "crap", "suck", "dumb", "loser", "trash", 
                "stupid", "idiot", "moron", "pathetic", "bad", "ugly", 
                "disgusting", "nasty", "filthy", "asshole", "bitch", "bastard"
            ],
            "bengali": ["বাজে", "খারাপ", "নোংরা", "বেকুব"]
        }
    
    def _translate_to_english(self, text: str) -> Optional[str]:
        """Translate Bengali to English using deep-translator"""
        try:
            print(f"🔄 Translating Bengali text to English...")
            
            # deep-translator has a 5000 character limit per request
            max_chars = 4500
            if len(text) > max_chars:
                text_to_translate = text[:max_chars]
                print(f"⚠️  Text truncated to {max_chars} characters for translation")
            else:
                text_to_translate = text
            
            # Translate using Google Translate
            translated_text = self.translator.translate(text_to_translate)
            
            print(f"✓ Translation successful")
            print(f"   Original (Bengali): {text_to_translate[:100]}...")
            print(f"   Translated (English): {translated_text[:100]}...")
            
            return translated_text
        except Exception as e:
            print(f"❌ Translation failed: {e}")
            # Try splitting into smaller chunks if it fails
            try:
                print("🔄 Retrying with smaller chunks...")
                words = text.split()
                chunks = []
                current_chunk = []
                current_length = 0
                
                for word in words:
                    if current_length + len(word) > 1000:  # Smaller chunks
                        if current_chunk:
                            chunks.append(' '.join(current_chunk))
                        current_chunk = [word]
                        current_length = len(word)
                    else:
                        current_chunk.append(word)
                        current_length += len(word) + 1
                
                if current_chunk:
                    chunks.append(' '.join(current_chunk))
                
                translated_chunks = []
                for chunk in chunks[:5]:  # Translate max 5 chunks
                    translated_chunk = self.translator.translate(chunk)
                    translated_chunks.append(translated_chunk)
                
                translated_text = ' '.join(translated_chunks)
                print(f"✓ Translation successful with chunking")
                return translated_text
            except Exception as e2:
                print(f"❌ Translation with chunking also failed: {e2}")
                return None
    
    def _load_custom_models(self):
        """Load language-specific custom models"""
        try:
            if os.path.exists(self.english_model_path) and os.path.exists(self.english_vectorizer_path):
                print("Loading English custom model...")
                self.english_model = joblib.load(self.english_model_path)
                self.english_vectorizer = joblib.load(self.english_vectorizer_path)
                self.english_model_loaded = True
                print("✓ English custom model loaded")
            else:
                print("❌ English custom model not found")
                self.english_model_loaded = False
        except Exception as e:
            print(f"❌ Error loading English model: {e}")
            self.english_model_loaded = False
        
        try:
            if os.path.exists(self.bengali_model_path) and os.path.exists(self.bengali_vectorizer_path):
                print("Loading Bengali custom model...")
                self.bengali_model = joblib.load(self.bengali_model_path)
                self.bengali_vectorizer = joblib.load(self.bengali_vectorizer_path)
                self.bengali_model_loaded = True
                print("✓ Bengali custom model loaded")
            else:
                print("❌ Bengali custom model not found")
                self.bengali_model_loaded = False
        except Exception as e:
            print(f"❌ Error loading Bengali model: {e}")
            self.bengali_model_loaded = False
    
    def _load_pretrained_model(self, model_key: str):
        """Lazy load pretrained model"""
        model_info = self.pretrained_models.get(model_key)
        if not model_info:
            return
        
        if model_info["pipeline"] is None:
            try:
                print(f"Loading {model_key} pretrained model: {model_info['name']}...")
                model_info["pipeline"] = pipeline(
                    "text-classification",
                    model=model_info["name"],
                    device=-1,
                    top_k=None,
                    truncation=True,
                    max_length=512
                )
                print(f"✓ {model_key} pretrained model loaded")
            except Exception as e:
                print(f"❌ Error loading {model_key} pretrained model: {e}")
                model_info["pipeline"] = None
    
    # async def classify_with_custom_model(self, text: str, language: str) -> Dict:
    #     """Classify using language-specific custom model"""
    #     if language == "english":
    #         if not self.english_model_loaded:
    #             return None
    #         model = self.english_model
    #         vectorizer = self.english_vectorizer
    #     elif language == "bengali":
    #         if not self.bengali_model_loaded:
    #             return None
    #         model = self.bengali_model
    #         vectorizer = self.bengali_vectorizer
    #     else:
    #         return None
        
    #     try:
    #         X = vectorizer.transform([text])
    #         prediction = model.predict(X)[0]
            
    #         if hasattr(model, 'predict_proba'):
    #             probabilities = model.predict_proba(X)[0]
    #             confidence = float(max(probabilities))
    #         else:
    #             confidence = 0.75
            
    #         if language == "english":
    #             if prediction == 0:
    #                 category = "neutral"
    #             else:
    #                 category = "hate_speech"
    #         else:
    #             if prediction == 0:
    #                 category = "neutral"
    #             elif prediction == 1:
    #                 category = "offensive"
    #             else:
    #                 category = "hate_speech"
            
    #         return {
    #             "category": category,
    #             "confidence": confidence,
    #             "method": f"custom_model_{language}",
    #             "raw_prediction": int(prediction)
    #         }
    #     except Exception as e:
    #         print(f"❌ Custom model classification failed: {e}")
    #         return None
    # async def classify_with_custom_model(self, text: str, language: str) -> Dict:
    #     """Classify using language-specific custom model"""
    #     if language == "english":
    #         if not self.english_model_loaded:
    #             return None
    #         model = self.english_model
    #         vectorizer = self.english_vectorizer
    #     elif language == "bengali":
    #         if not self.bengali_model_loaded:
    #             return None
    #         model = self.bengali_model
    #         vectorizer = self.bengali_vectorizer
    #     else:
    #         return None
        
    #     try:
    #         X = vectorizer.transform([text])
    #         prediction = model.predict(X)[0]
            
    #         if hasattr(model, 'predict_proba'):
    #             probabilities = model.predict_proba(X)[0]
    #             # ✅ FIX: Use probability of the PREDICTED class, not max
    #             confidence = float(probabilities[prediction])
                
    #             # Debug logging
    #             print(f"🔍 Custom Model Debug:")
    #             print(f"   Prediction: {prediction}")
    #             print(f"   Probabilities: {probabilities}")
    #             print(f"   Confidence: {confidence:.4f}")
    #         else:
    #             confidence = 0.75
            
    #         if language == "english":
    #             if prediction == 0:
    #                 category = "neutral"
    #             else:
    #                 category = "hate_speech"
    #         else:
    #             if prediction == 0:
    #                 category = "neutral"
    #             elif prediction == 1:
    #                 category = "offensive"
    #             else:
    #                 category = "hate_speech"
            
    #         return {
    #             "category": category,
    #             "confidence": confidence,
    #             "method": f"custom_model_{language}",
    #             "raw_prediction": int(prediction),
    #             "probabilities": probabilities.tolist() if hasattr(model, 'predict_proba') else None
    #         }
    #     except Exception as e:
    #         print(f"❌ Custom model classification failed: {e}")
    #         import traceback
    #         traceback.print_exc()
    #         return None
    async def classify_with_custom_model(self, text: str, language: str) -> Dict:
        """Classify using language-specific custom model"""
        if language == "english":
            if not self.english_model_loaded:
                print("❌ English model not loaded, returning None")
                return None
            model = self.english_model
            vectorizer = self.english_vectorizer
        elif language == "bengali":
            if not self.bengali_model_loaded:
                print("❌ Bengali model not loaded, returning None")
                return None
            model = self.bengali_model
            vectorizer = self.bengali_vectorizer
        else:
            return None
        
        try:
            # Debug: Check model type
            print(f"🔍 Model type: {type(model)}")
            print(f"🔍 Has predict_proba: {hasattr(model, 'predict_proba')}")
            
            X = vectorizer.transform([text])
            prediction = model.predict(X)[0]
            
            print(f"🔍 Raw prediction: {prediction}")
            
            if hasattr(model, 'predict_proba'):
                probabilities = model.predict_proba(X)[0]
                confidence = float(probabilities[prediction])
                
                print(f"🔍 Custom Model Debug:")
                print(f"   Prediction: {prediction}")
                print(f"   Probabilities: {probabilities}")
                print(f"   Confidence (probabilities[{prediction}]): {confidence:.4f}")
            else:
                print("⚠️ Model doesn't have predict_proba, using fallback 0.75")
                confidence = 0.75
            
            if language == "english":
                if prediction == 0:
                    category = "neutral"
                else:
                    category = "hate_speech"
            else:
                if prediction == 0:
                    category = "neutral"
                elif prediction == 1:
                    category = "offensive"
                else:
                    category = "hate_speech"
            
            return {
                "category": category,
                "confidence": confidence,
                "method": f"custom_model_{language}",
                "raw_prediction": int(prediction),
                "probabilities": probabilities.tolist() if hasattr(model, 'predict_proba') else None
            }
        except Exception as e:
            print(f"❌ Custom model classification failed: {e}")
            import traceback
            traceback.print_exc()
            return None
    async def classify_with_pretrained_model(self, text: str, language: str = "english") -> Dict:
        """Classify using ensemble of pretrained models with translation support"""
        
        # Translate Bengali text to English
        translated_text = None
        if language == "bengali":
            translated_text = self._translate_to_english(text)
            if not translated_text:
                print("❌ Translation failed, skipping pretrained models")
                return None
            text_to_analyze = translated_text
        else:
            text_to_analyze = text
        
        results = []
        
        # For long texts, analyze first 400 words
        words = text_to_analyze.split()
        if len(words) > 400:
            truncated_text = ' '.join(words[:400])
            print(f"⚠️  Text too long ({len(words)} words), analyzing first 400 words")
        else:
            truncated_text = text_to_analyze
        
        # Try primary model
        self._load_pretrained_model("primary")
        primary = self.pretrained_models["primary"]
        
        if primary["pipeline"] is not None:
            try:
                result = primary["pipeline"](truncated_text)[0]
                
                if isinstance(result, list):
                    result = result[0]
                
                label = result['label'].lower()
                confidence = float(result['score'])
                
                if 'hate' in label and 'not' not in label:
                    category = "hate_speech"
                elif 'not' in label or 'non' in label:
                    category = "neutral"
                else:
                    category = "offensive"
                
                results.append({
                    "category": category,
                    "confidence": confidence,
                    "weight": primary["weight"],
                    "model": "primary",
                    "raw_label": result['label']
                })
                
                print(f"[Primary Model] {result['label']} -> {category} ({confidence:.2%})")
            except Exception as e:
                print(f"❌ Primary model failed: {e}")
        
        # Try secondary model
        self._load_pretrained_model("secondary")
        secondary = self.pretrained_models["secondary"]
        
        if secondary["pipeline"] is not None:
            try:
                result = secondary["pipeline"](truncated_text)[0]
                
                if isinstance(result, list):
                    result = result[0]
                
                label = result['label'].lower()
                confidence = float(result['score'])
                
                if 'hate' in label:
                    category = "hate_speech"
                elif 'offensive' in label:
                    category = "offensive"
                else:
                    category = "neutral"
                
                results.append({
                    "category": category,
                    "confidence": confidence,
                    "weight": secondary["weight"],
                    "model": "secondary",
                    "raw_label": result['label']
                })
                
                print(f"[Secondary Model] {result['label']} -> {category} ({confidence:.2%})")
            except Exception as e:
                print(f"❌ Secondary model failed: {e}")
        
        if not results:
            return None
        
        # Ensemble voting
        category_scores = {}
        for result in results:
            cat = result["category"]
            score = result["confidence"] * result["weight"]
            category_scores[cat] = category_scores.get(cat, 0) + score
        
        final_category = max(category_scores, key=category_scores.get)
        total_weight = sum(r["weight"] for r in results)
        final_confidence = category_scores[final_category] / total_weight
        
        raw_labels = [r["raw_label"] for r in results]
        
        return {
            "category": final_category,
            "confidence": final_confidence,
            "method": "pretrained_ensemble",
            "raw_labels": raw_labels,
            "models_used": [r["model"] for r in results],
            "translated": language == "bengali",
            "translated_text": translated_text[:200] + "..." if translated_text and len(translated_text) > 200 else translated_text
        }
    
    def classify_with_keywords(self, text: str, language: str) -> Dict:
        """Classify using keyword and pattern matching"""
        text_lower = text.lower()
        
        hate_count = sum(1 for keyword in self.hate_keywords.get(language, []) 
                        if keyword.lower() in text_lower)
        offensive_count = sum(1 for keyword in self.offensive_keywords.get(language, []) 
                             if keyword.lower() in text_lower)
        
        pattern_matches = []
        matched_patterns = []
        for pattern in self.hate_patterns.get(language, []):
            match = re.search(pattern, text_lower, re.IGNORECASE)
            if match:
                pattern_matches.append(pattern)
                matched_patterns.append(match.group(0))
        
        if pattern_matches or hate_count > 0:
            category = "hate_speech"
            base_confidence = 0.90 if pattern_matches else 0.7
            confidence = min(base_confidence + (hate_count * 0.03), 0.98)
        elif offensive_count > 0:
            category = "offensive"
            confidence = min(0.6 + (offensive_count * 0.08), 0.88)
        else:
            category = "neutral"
            confidence = 0.7
        
        detected_keywords = []
        for keyword in self.hate_keywords.get(language, []):
            if keyword.lower() in text_lower:
                detected_keywords.append(keyword)
        for keyword in self.offensive_keywords.get(language, []):
            if keyword.lower() in text_lower:
                detected_keywords.append(keyword)
        
        return {
            "category": category,
            "confidence": confidence,
            "method": "keyword_matching",
            "detected_keywords": detected_keywords,
            "hate_count": hate_count,
            "offensive_count": offensive_count,
            "pattern_matches": len(pattern_matches),
            "matched_patterns": matched_patterns[:3]
        }